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Abstract.  Autonomous  Mobile  Robots  have  a  wide  range  of  applications,
although their development is not trivial. Tools such as the presented by the
Robot Operating System (ROS) and the vast number of open-source packages
available  speed  up  the  development.  In  order  to  navigate  through  an
environment  without  a  human  operator,  robots  may  rely  on  path  planning
algorithms to calculate its route, avoiding obstacles. A vast number of possible
algorithms, ranging from the native to ROS packages, or the use of external
technologies can be confusing when it  comes to selecting algorithms for an
application.  This  paper  introduces  the  main  components  of  path  planning,
present literature comparisons of ROS native Navigation2’s algorithms along
with different approaches observed in literature.
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1. Introduction
Mobile  robots  present  a  large  set  of
applications,  such  as  inspections  in
hazardous  environments,  security  and
surveillance, and self-driven vehicles [1].

In  general,  as  states  ISO  8373:2021  [2],
mobile  robots  are  "robots  able  to  travel
under  their  own  control,"  independent  of
those  being  wheeled,  legged,  tracked,  or
even aerial or aquatic. 

In  many  scenarios,  it  is  possible  and
desired for a mobile robot to be controlled
remotely by a human operator. Although, in
some  cases,  an  autonomous  approach  is
more  convenient  or  even  the  only  viable
option  due  to  the  high  latency  of
communication. 

Autonomous robots are defined as able to
perform  their  tasks  without  a  human
operator, basing their actions on their own
sensors,  both  proprioceptive  and
exteroceptive.  In  terms  of  mobile  robots,
being  autonomous  is  often  related  to
navigating through the environment on its

own, which includes localization, mapping,
path  planning,  and  providing  direction  of
travel [2].

When  it  comes  to  the  implementation  of
robots, a common challenge is to integrate
the various software and systems required
for their functioning, as well as the lack of
standardization in hardware from different
manufacturers [3]. 

Different  solutions  to  integrating  robotics
systems  have  been  developed,  but  an
outstanding  one  is  the  Robot  Operating
System (ROS), which aims to express each
software component as an individual node,
incentivizing  a  modular  structure  for  the
system.  ROS  also  acts  as  middleware,
providing communication through nodes in
both  publish-subscribe  format  and  client-
server [4]. 

ROS is  an open source system that got a
new  version  in  2017:  ROS2,  that  among
other  improvements  adopts  the  Data
Distribution Service (DDS) communication
standard [5,6]. In this work, the term ROS
will be used to refer to ROS2 for simplicity.



Apart from the modularity, the vast number
of open source packages developed by the
ROS community is one of the major reasons
to employ it, as states [4]. When it comes to
navigation,  some  impactful  tools  are
provided  by  the  Navigation  2  (Nav2)
packages.

Tools  such  as  Simultaneous  Localization
and  Mapping  (SLAM)  and  multiple
algorithms  for  path  planning  and  motion
control are provided by Nav2 [7]. This way,
making  a  mobile  robot  autonomous  can
focus  on  selecting  and  configuring
algorithms  rather  than  writing  and
adapting an algorithm.

This work proposes to review bibliography
in order to introduce the path planning and
motion control algorithms present in Nav2
and  how  they  perform  in  different
combinations and scenarios. 

2.Methodology
This work examines the functions  of  path
planning  and  motion  control,  known  as
global  and  local  path  planning,
respectively,  and  the  performance  of  the
algorithms in Nav2. It reviews four of the
five  publications  referenced  in  the  Nav2
documentation  along  with  the
documentation itself,  as well  as additional
studies published in high-impact journals.

Using  the  advanced  search  tool  of  IEEE
Xplore,  searching  for:  "mobile  robots",
"path  planning",  "algorithm  comparison",
and  "Navigation  2",  in  all  metadata,  29
results are presented  of publication from
1993  to  2024.  Limiting  the  time  period
from 2020 to 2024, only 14 results persist,
from  which  12  are  publications  from
conferences and 2 from journals.

3.Path Planning
The  task  of  guiding  a  robot  through  an
environment is divided into two main parts:
finding a viable path from the origin pose
to  the  desired  pose  and  converting  each
step of  the  path  to  the  robot's  actuators,
often  considering  the  robot's  movement
limitations and kinematics [8].

The first part, called global path planning,
addresses the problem of finding a viable
path in the environment from a known map
of  this  environment,  avoiding  static
obstacles, and trying to minimize the total
distance.  Global  path  planners  typically
take into account only a few or none of the
robot's kinematic limitations. Nav2 offers a
variety  of  global  path  planners,  including

Dijkstra,  A,  Theta,  Hybrid-A*,  and  State
Lattice [9,10,11]. 

Once a  global  path has been established,
the second part comes in, called local path
planner  or  motion  control.  It  takes  the
global  path,  which  consists  of  a  series  of
intermediate  poses,  and  generates  the
signals for the actuators to drive the robot
through those poses [5,9].

In  the  local  path  planner,  the  robot's
kinematics,  and  also  dynamics  for  some
algorithms,  are  considered  in  order  to
calculate the robot's  movement.  The local
path planner can also smooth the original
global  path,  although  some  sources  may
separate  the  path  smoothing  task  as  a
different algorithm, as in Nav2 [9].

4.Navigation2 Algorithms
Nav2  presents  two  types  of  global  path
planners:  holonomic  planners  and
kinematically feasible planners. Holonomic
planners typically rely on conventional grid
expansion algorithms, which disregard the
robot's orientation during route generation
[9]. 

To  detect  collisions,  these  algorithms
evaluate  the  costs  of  traversed  cells;  for
instance,  if  the  cost  of  a  location  (taking
into account an inflated cost map) is rising,
it  is  probable  that  the  path  is  nearing
obstacles.  Holonomic  planners  are
generally  more  appropriate  for
omnidirectional or differential drive robots,
particularly when the robot's footprint may
be approximated as circular. The holonomic
planners present in Nav2 are Dijkstra, A*,
and Theta* [9]. 

However,  robots  with  more  complicated
maneuverability,  including  Ackermann
steering robots, legged robots, differential
drive  robots,  or  other  holonomic  bases
whose  footprint  cannot  be  roughly
represented  as  a  circle,  are  better  suited
for kinematically feasible planners [9]. 

The  kinematically  feasible  planners  take
into  account  the  robot's  kinematic
characteristics, although dynamics are only
found  in  local  path  planners.  The
kinematically  feasible  planners  present  in
Nav2 are Hybrid-A* and State Lattice[9].

These  algorithms,  as  states  Zhang  et  al.
[11],  optimize  their  paths  using  cost
functions,  this  way,  inefficient  cost
functions  can lead  to  increased  time  and
space complexity, excessive path turns, and
longer overall path length.



About  the  local  path  planners,  Nav2
presents three type of algorithms: reactive,
predictive, and geometrical. 

Reactive planners adjust the global route in
response to environmental changes, as the
sensor data received may be more current
or provide additional information compared
to  what  was  available  during  the  initial
computation of the global route. Instances
of reactive planners include DWB and TEB
[9].

Predictive planners adjust the global route
utilizing  fresh  data,  similar  to  reactive
planners,  while  additionally  considering
temporal factors,  optimizing the timing of
each operation within the global trajectory,
and  frequently  generating  complex
sequences of speed orders. An instance of a
predictive planner in Nav2 is MPPI [9]. 

Geometric  planners  represent  the  most
basic model,  as they refrain from altering
the  global  route  upon  the  detection  of
obstacles.  Robots  employing  these  local
planning  algorithms  will  stop  until  the
barrier is eliminated without altering their
trajectory.  An  instance  of  a  geometric
planner is the RPP [9].

5.Comparison
Tüfekçi and Erdemir [12] run a simulation
experiment on Gazebo in order to evaluate
the  performance  of  three  global  path
planners in an unknown environment. The
global  path  planner  algorithms  compared
are Dijkstra, A*, and Carrot planner; all of
them are  paired  with  DWA as  local  path
planner. 

In  Tüfekçi’s  and  Erdemir’s  [12]
experiments, the planners should calculate
a path, but when faced with a new obstacle,
they should recalculate a new path. Upon
evaluating the total journey duration of the
robot, from the initial to the final position
across  two  distinct  environments,  both
Dijkstra  and  A*  algorithms  exhibited
comparable  travel  times;  however,  the
Carrot  planner  demonstrated  travel  times
exceeding  double  those  of  the  other
methods.

Gurevin  et  al.  [13]  performs  a  simulation
comparison  of  three  local  path  planners:
DWA, TEB, and Trajectory planner. In the
experiment,  the  robot  travels  through  6
stations, with all the cases considering the
same global path planner.

In  Gurevin  et  al.  [13]  experiments,  DWA
performed  the  shortest  travel  distance,
while TEB performed the longest. The DWA

local planner algorithm was 24.64% more
successful than the TEB local planner and
2.39% more successful than the Trajectory
local planner in terms of time it took to visit
all stations.

In Macenski et al. [9], a robust comparison
is  presented;  among  the  global  path
planners,  all  the  algorithms  present  in
Nav2 are evaluated through plan time and
path length. 

In terms of plan time, Hybrid-A* and State
Lattice outperformed Dijkstra, Theta*, and
A*  by  a  notable  margin,  with  Hybrid-A*
presenting the shortest time and Theta* the
longest.  Although,  in  path  length,  the
results  produced  similar  lengths,  being
Dijkstra  slightly  longer  and  A*  slightly
shorter [9].

Macenski  et  al.  [9]  also  presents  a
comparison  for  the  local  path  planners,
comparing DWB, TEB, Graceful, MPPI, and
RPP according to the maximum frequency
they  can  iterate;  this  can  describe  the
algorithmic computational power required.

In  this  comparison,  MPPI  showed  as  the
most  computationally  hungry  algorithm,
followed by TEB, DWB, Graceful, and RPP.
Macenski et al. [9] also classify what types
of  robots  each  algorithm  is  compatible
with,  being  DWB and Graceful  not  viable
with Ackermann or Legged mobile robots,
nor are the Dijkstra, Theta*, and A* global
planners.

Antunes  [14]  produces  a  simulation
experiment,  combining  the  global  path
planners Dijkstra, A, Theta, and Hybrid-A*,
along  with  the  local  path  planners  DWB,
MPPI,  and  RPP.  The  experiment  also
considers the Rotation Shim combined with
each of the local path planners, producing
a total of 24 combinations. 

In  the  experiments,  Antunes  [14]  sets  11
poses  which  the  robot  should  navigate
through;  the  latter  compare  the
combinations according to travel distance,
travel time, and maneuvering time. The last
is considered the total time the robot spent
in  without  major  dislocation,  mostly
adjusting its orientation. 

In  Antunes’  [14]  experiments,  the
combination  of  Hybrid-A*  and DWB stood
out  with  the  shortest  travel  distance  and
shortest  maneuvering  time.  The  shortest
travel  time  occurred  in  the  Theta*  and
DWB  combination,  which  presented  a
travel distance similar to the shortest.



6.Different Approaches
Apart from the native algorithms present in
Nav2,  it  is  also  possible  to  implement
different  algorithms  into  the  Nav2
ecosystem,  using  the  rest  of  Nav2
environment  with  a  different  global  path
planner, for example. 

Zhang et al. [11] proposes an improved JPS
as  global  path  planner.  The  original  JPS
algorithm  is  a  modification  of  A*.  In  the
simulation  experiment,  the  proposed
algorithm  outperformed  A*  in  15.9%  in
terms of time efficiency and 36.3% in total
length path.

Focused on human-robot interactions, Chu
et al. [15] discusses the use of algorithms
able  to  optimize  paths  in  real  time  with
active  object  capability.  Chu  et  al.  [15]
technique considers an RRT* algorithm for
providing  a  pre-planned  path  and  further
improves  it  considering  risk-based
constraints. 

Manwal et al. [16] approach also consider
environments  shared  by  robots  and
humans. While most path planners seek to
minimize  travel  distance,  the
[[Manwal2024DevelopmentOfUtilisingMR]]
method  combines  potential  fields  method
with the concept of risk map. 

Finally,  the  Manwal  et  al.  [16]  algorithm
uses  Dijkstra  for  planning  low-risk  paths,
respecting  humans  personal  boundaries
and  social  dynamics  as  conversing
individuals. 

Hosni,  Kheiri  and  Najafi  [17] propose  a
global planner based on an artificial neural
network  model.  The  model  can  obtain
navigation policies from a skilled operator
and  then  utilize  this  knowledge  in  new
environments through appropriate training
data.  Hosni’s,  Kheiri’s  and  Najafi’s  [17]
study  conducts  comprehensive  simulation
tests  to  evaluate  the  model's  capabilities,
demonstrating its capacity for training with
this data and application in novel contexts.

Liu et al. [18], on the other hand, proposes
an  indoor  partitioning  algorithm  for
processing indoor maps and improves the
performance  of  global  path  planners.  It
effectively  lowers  the  computational
demands  of  the  global  path  task  by
analyzing  the  global  map,  therefore
enhancing  the  computational  efficiency  of
the global path planning algorithm.

Liu’s  et  al.  [18]  algorithm  minimizes  the
computational workload of the global path
planning  algorithm  by  identifying  the

partitions  containing  the  starting  and
ending points  in the global path planning
task, thereby disregarding irrelevant global
map  information  when  transitioning  from
the  starting  partition  to  the  ending
partition.

Wei  et  al.  [19]  propose  the  use  of  Deep
Reinforced  Learning  for  local  path
planners,  investigating the applicability  of
real-life  algorithms  within  simulated
robotic  environments.  Through
experimental  tests,  the  Wei  et  al.  [19]
approach could reduce collision frequency
and improve path smoothness.

Abandoning  the  separation  of  global  path
planners  and  local  path  planners,  Gupta,
Asha,  and  D’Souza  [20]  proposes  the
application  of  bug  algorithms  based  on
insect behaviors. Gupta, Asha, and D’Souza
[20] claim that bug algorithms, such as Bug
0,  Bug  1,  Bug  2,  DistBug,  Tangent  Bug,
VisBug,  and  OneBug,  are  simpler  to
implement  and  require  fewer
computational resources. 

7.Conclusions
The  Robot  Operating  System  combines  a
series  of  tools  to  facilitate  robot
development. Along with the tools native to
ROS,  there  are  a  vast  number  of  open-
source,  community-comtributed  packages
that can speed up development.

Nav2 provides many important tools for the
development of autonomous mobile robots,
including  a  number  of  path  planning
algorithms,  both  global  and  local,  along
with other navigation features.

Most of the planners available in Nav2 are
based  on  classical  algorithms,  such  as
Dijkstra and A*. Although few authors have
explored  how  the  global  path  planner
algorithms  and  local  path  planner
algorithms  interact  with  each  other  and
how  different  combinations  can  be  more
suitable for different scenarios.

On  the  other  hand,  plenty  of  authors
explore  new  areas,  proposing  new
algorithms  in  order  to  outperform  the
classical ones.

Among the new technologies being applied
to path planning, those based on artificial
intelligence  and  neural  networks  got
promising results.
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