
UNIGOU Training 2024
Czech-Brazilian Academic Program

Global and Local Path Planning
Algorithms in ROS2: A Literature Review
Leonardo Augusto Antunes a,b.
a Faculty of Engineering and Exact Sciences, State University of Western Paraná, Foz do Iguaçu,
Brazil, leonardo.antunes@unioeste.br.
b Centro de Tecnologias Aplicadas, Diretoria de Tecnologias, Itaipu Parquetec. Foz do Iguaçu,
Brazil, leonardo.aa@bolsista.pti.org.br.

Abstract. Autonomous Mobile Robots have a wide range of applications,
although their development is not trivial. Tools such as the presented by the
Robot Operating System (ROS) and the vast number of open-source packages
available speed up the development. In order to navigate through an
environment without a human operator, robots may rely on path planning
algorithms to calculate its route, avoiding obstacles. A vast number of possible
algorithms, ranging from the native to ROS packages, or the use of external
technologies can be confusing when it comes to selecting algorithms for an
application. This paper introduces the main components of path planning,
present literature comparisons of ROS native Navigation2’s algorithms along
with different approaches observed in literature.

Keywords. Robot operating System, Navigation2, path planning, algorithm
comparison.

1. Introduction
Mobile robots present a large set of
applications, such as inspections in
hazardous environments, security and
surveillance, and self-driven vehicles [1].

In general, as states ISO 8373:2021 [2],
mobile robots are "robots able to travel
under their own control," independent of
those being wheeled, legged, tracked, or
even aerial or aquatic.

In many scenarios, it is possible and
desired for a mobile robot to be controlled
remotely by a human operator. Although, in
some cases, an autonomous approach is
more convenient or even the only viable
option due to the high latency of
communication.

Autonomous robots are defined as able to
perform their tasks without a human
operator, basing their actions on their own
sensors, both proprioceptive and
exteroceptive. In terms of mobile robots,
being autonomous is often related to
navigating through the environment on its

own, which includes localization, mapping,
path planning, and providing direction of
travel [2].

When it comes to the implementation of
robots, a common challenge is to integrate
the various software and systems required
for their functioning, as well as the lack of
standardization in hardware from different
manufacturers [3].

Different solutions to integrating robotics
systems have been developed, but an
outstanding one is the Robot Operating
System (ROS), which aims to express each
software component as an individual node,
incentivizing a modular structure for the
system. ROS also acts as middleware,
providing communication through nodes in
both publish-subscribe format and client-
server [4].

ROS is an open source system that got a
new version in 2017: ROS2, that among
other improvements adopts the Data
Distribution Service (DDS) communication
standard [5,6]. In this work, the term ROS
will be used to refer to ROS2 for simplicity.

Apart from the modularity, the vast number
of open source packages developed by the
ROS community is one of the major reasons
to employ it, as states [4]. When it comes to
navigation, some impactful tools are
provided by the Navigation 2 (Nav2)
packages.

Tools such as Simultaneous Localization
and Mapping (SLAM) and multiple
algorithms for path planning and motion
control are provided by Nav2 [7]. This way,
making a mobile robot autonomous can
focus on selecting and configuring
algorithms rather than writing and
adapting an algorithm.

This work proposes to review bibliography
in order to introduce the path planning and
motion control algorithms present in Nav2
and how they perform in different
combinations and scenarios.

2.Methodology
This work examines the functions of path
planning and motion control, known as
global and local path planning,
respectively, and the performance of the
algorithms in Nav2. It reviews four of the
five publications referenced in the Nav2
documentation along with the
documentation itself, as well as additional
studies published in high-impact journals.

Using the advanced search tool of IEEE
Xplore, searching for: "mobile robots",
"path planning", "algorithm comparison",
and "Navigation 2", in all metadata, 29
results are presented of publication from
1993 to 2024. Limiting the time period
from 2020 to 2024, only 14 results persist,
from which 12 are publications from
conferences and 2 from journals.

3.Path Planning
The task of guiding a robot through an
environment is divided into two main parts:
finding a viable path from the origin pose
to the desired pose and converting each
step of the path to the robot's actuators,
often considering the robot's movement
limitations and kinematics [8].

The first part, called global path planning,
addresses the problem of finding a viable
path in the environment from a known map
of this environment, avoiding static
obstacles, and trying to minimize the total
distance. Global path planners typically
take into account only a few or none of the
robot's kinematic limitations. Nav2 offers a
variety of global path planners, including

Dijkstra, A, Theta, Hybrid-A*, and State
Lattice [9,10,11].

Once a global path has been established,
the second part comes in, called local path
planner or motion control. It takes the
global path, which consists of a series of
intermediate poses, and generates the
signals for the actuators to drive the robot
through those poses [5,9].

In the local path planner, the robot's
kinematics, and also dynamics for some
algorithms, are considered in order to
calculate the robot's movement. The local
path planner can also smooth the original
global path, although some sources may
separate the path smoothing task as a
different algorithm, as in Nav2 [9].

4.Navigation2 Algorithms
Nav2 presents two types of global path
planners: holonomic planners and
kinematically feasible planners. Holonomic
planners typically rely on conventional grid
expansion algorithms, which disregard the
robot's orientation during route generation
[9].

To detect collisions, these algorithms
evaluate the costs of traversed cells; for
instance, if the cost of a location (taking
into account an inflated cost map) is rising,
it is probable that the path is nearing
obstacles. Holonomic planners are
generally more appropriate for
omnidirectional or differential drive robots,
particularly when the robot's footprint may
be approximated as circular. The holonomic
planners present in Nav2 are Dijkstra, A*,
and Theta* [9].

However, robots with more complicated
maneuverability, including Ackermann
steering robots, legged robots, differential
drive robots, or other holonomic bases
whose footprint cannot be roughly
represented as a circle, are better suited
for kinematically feasible planners [9].

The kinematically feasible planners take
into account the robot's kinematic
characteristics, although dynamics are only
found in local path planners. The
kinematically feasible planners present in
Nav2 are Hybrid-A* and State Lattice[9].

These algorithms, as states Zhang et al.
[11], optimize their paths using cost
functions, this way, inefficient cost
functions can lead to increased time and
space complexity, excessive path turns, and
longer overall path length.

About the local path planners, Nav2
presents three type of algorithms: reactive,
predictive, and geometrical.

Reactive planners adjust the global route in
response to environmental changes, as the
sensor data received may be more current
or provide additional information compared
to what was available during the initial
computation of the global route. Instances
of reactive planners include DWB and TEB
[9].

Predictive planners adjust the global route
utilizing fresh data, similar to reactive
planners, while additionally considering
temporal factors, optimizing the timing of
each operation within the global trajectory,
and frequently generating complex
sequences of speed orders. An instance of a
predictive planner in Nav2 is MPPI [9].

Geometric planners represent the most
basic model, as they refrain from altering
the global route upon the detection of
obstacles. Robots employing these local
planning algorithms will stop until the
barrier is eliminated without altering their
trajectory. An instance of a geometric
planner is the RPP [9].

5.Comparison
Tüfekçi and Erdemir [12] run a simulation
experiment on Gazebo in order to evaluate
the performance of three global path
planners in an unknown environment. The
global path planner algorithms compared
are Dijkstra, A*, and Carrot planner; all of
them are paired with DWA as local path
planner.

In Tüfekçi’s and Erdemir’s [12]
experiments, the planners should calculate
a path, but when faced with a new obstacle,
they should recalculate a new path. Upon
evaluating the total journey duration of the
robot, from the initial to the final position
across two distinct environments, both
Dijkstra and A* algorithms exhibited
comparable travel times; however, the
Carrot planner demonstrated travel times
exceeding double those of the other
methods.

Gurevin et al. [13] performs a simulation
comparison of three local path planners:
DWA, TEB, and Trajectory planner. In the
experiment, the robot travels through 6
stations, with all the cases considering the
same global path planner.

In Gurevin et al. [13] experiments, DWA
performed the shortest travel distance,
while TEB performed the longest. The DWA

local planner algorithm was 24.64% more
successful than the TEB local planner and
2.39% more successful than the Trajectory
local planner in terms of time it took to visit
all stations.

In Macenski et al. [9], a robust comparison
is presented; among the global path
planners, all the algorithms present in
Nav2 are evaluated through plan time and
path length.

In terms of plan time, Hybrid-A* and State
Lattice outperformed Dijkstra, Theta*, and
A* by a notable margin, with Hybrid-A*
presenting the shortest time and Theta* the
longest. Although, in path length, the
results produced similar lengths, being
Dijkstra slightly longer and A* slightly
shorter [9].

Macenski et al. [9] also presents a
comparison for the local path planners,
comparing DWB, TEB, Graceful, MPPI, and
RPP according to the maximum frequency
they can iterate; this can describe the
algorithmic computational power required.

In this comparison, MPPI showed as the
most computationally hungry algorithm,
followed by TEB, DWB, Graceful, and RPP.
Macenski et al. [9] also classify what types
of robots each algorithm is compatible
with, being DWB and Graceful not viable
with Ackermann or Legged mobile robots,
nor are the Dijkstra, Theta*, and A* global
planners.

Antunes [14] produces a simulation
experiment, combining the global path
planners Dijkstra, A, Theta, and Hybrid-A*,
along with the local path planners DWB,
MPPI, and RPP. The experiment also
considers the Rotation Shim combined with
each of the local path planners, producing
a total of 24 combinations.

In the experiments, Antunes [14] sets 11
poses which the robot should navigate
through; the latter compare the
combinations according to travel distance,
travel time, and maneuvering time. The last
is considered the total time the robot spent
in without major dislocation, mostly
adjusting its orientation.

In Antunes’ [14] experiments, the
combination of Hybrid-A* and DWB stood
out with the shortest travel distance and
shortest maneuvering time. The shortest
travel time occurred in the Theta* and
DWB combination, which presented a
travel distance similar to the shortest.

6.Different Approaches
Apart from the native algorithms present in
Nav2, it is also possible to implement
different algorithms into the Nav2
ecosystem, using the rest of Nav2
environment with a different global path
planner, for example.

Zhang et al. [11] proposes an improved JPS
as global path planner. The original JPS
algorithm is a modification of A*. In the
simulation experiment, the proposed
algorithm outperformed A* in 15.9% in
terms of time efficiency and 36.3% in total
length path.

Focused on human-robot interactions, Chu
et al. [15] discusses the use of algorithms
able to optimize paths in real time with
active object capability. Chu et al. [15]
technique considers an RRT* algorithm for
providing a pre-planned path and further
improves it considering risk-based
constraints.

Manwal et al. [16] approach also consider
environments shared by robots and
humans. While most path planners seek to
minimize travel distance, the
[[Manwal2024DevelopmentOfUtilisingMR]]
method combines potential fields method
with the concept of risk map.

Finally, the Manwal et al. [16] algorithm
uses Dijkstra for planning low-risk paths,
respecting humans personal boundaries
and social dynamics as conversing
individuals.

Hosni, Kheiri and Najafi [17] propose a
global planner based on an artificial neural
network model. The model can obtain
navigation policies from a skilled operator
and then utilize this knowledge in new
environments through appropriate training
data. Hosni’s, Kheiri’s and Najafi’s [17]
study conducts comprehensive simulation
tests to evaluate the model's capabilities,
demonstrating its capacity for training with
this data and application in novel contexts.

Liu et al. [18], on the other hand, proposes
an indoor partitioning algorithm for
processing indoor maps and improves the
performance of global path planners. It
effectively lowers the computational
demands of the global path task by
analyzing the global map, therefore
enhancing the computational efficiency of
the global path planning algorithm.

Liu’s et al. [18] algorithm minimizes the
computational workload of the global path
planning algorithm by identifying the

partitions containing the starting and
ending points in the global path planning
task, thereby disregarding irrelevant global
map information when transitioning from
the starting partition to the ending
partition.

Wei et al. [19] propose the use of Deep
Reinforced Learning for local path
planners, investigating the applicability of
real-life algorithms within simulated
robotic environments. Through
experimental tests, the Wei et al. [19]
approach could reduce collision frequency
and improve path smoothness.

Abandoning the separation of global path
planners and local path planners, Gupta,
Asha, and D’Souza [20] proposes the
application of bug algorithms based on
insect behaviors. Gupta, Asha, and D’Souza
[20] claim that bug algorithms, such as Bug
0, Bug 1, Bug 2, DistBug, Tangent Bug,
VisBug, and OneBug, are simpler to
implement and require fewer
computational resources.

7.Conclusions
The Robot Operating System combines a
series of tools to facilitate robot
development. Along with the tools native to
ROS, there are a vast number of open-
source, community-comtributed packages
that can speed up development.

Nav2 provides many important tools for the
development of autonomous mobile robots,
including a number of path planning
algorithms, both global and local, along
with other navigation features.

Most of the planners available in Nav2 are
based on classical algorithms, such as
Dijkstra and A*. Although few authors have
explored how the global path planner
algorithms and local path planner
algorithms interact with each other and
how different combinations can be more
suitable for different scenarios.

On the other hand, plenty of authors
explore new areas, proposing new
algorithms in order to outperform the
classical ones.

Among the new technologies being applied
to path planning, those based on artificial
intelligence and neural networks got
promising results.

8.References
[1] Ben-Ari M, Mondada F. Elements of

Robotics. Springer; 2017.

[2] ISO 8373:2021 [Internet].
International Organization for
Standardization. 2021. Available from:
https://www.iso.org/obp/ui/#iso:std:iso:8
373:ed-3:v1:en

[3] Quigley M. ROS: an open-source
Robot Operating System. International
Conference on Robotics and Automation.
2009 Jan 1.

[4] Takase H, Mori T, Takagi K, Takagi
N. mROS: A Lightweight Runtime
Environment for Robot Software
Components onto Embedded Devices.
Proceedings of the 10th International
Symposium on Highly-Efficient
Accelerators and Reconfigurable
Technologies. 2019 Jun 6.

[5] De Rose M. LiDAR-based Dynamic
Path Planning of a mobile robot
adopting a costmap layer approach in
ROS2 [MA thesis]. Politecnico de Torino;
2021.

[6] Macenski S, Martín F, White R,
Clavero JG. The Marathon 2: A
Navigation System. 2020 IEEE/RSJ
International Conference on Intelligent
Robots and Systems (IROS). 2020.
pages: 2718-2725

[7] Macenski S, Jambrecic I. SLAM
Toolbox: SLAM for the dynamic world.
The Journal of Open Source Software.
2021 May 13;6(61):2783.

[8] Fahimi F. Autonomous Robots:
Modeling, Path Planning, and Control.
Springer; 2008.

[9] Macenski S, Moore T, Lu DV,
Merzlyakov A, Ferguson M. From the
desks of ROS maintainers: A survey of
modern & capable mobile robotics
algorithms in the robot operating system
2. Robotics and Autonomous Systems.
2023 Jul 27;168:104493.

[10] LaValle SM. Planning Algorithms.
Cambridge University Press; 2006.

[11] Zhang Y, Yu Z, Shi Z, Zhou Z, Qi Y.
A New Method of Motion Planning for
Mobile Robots Based on Improved JPS
and Polynomial Trajectory Planning.
2024 4th International Conference on
Consumer Electronics and Computer
Engineering (ICCECE). 2024.

[12] Tüfekçi Z, Erdemir G. Experimental

Comparison of Global Planners for
Trajectory Planning of Mobile Robots in
an Unknown Environment with Dynamic
Obstacles. 2023 5th International
Congress on Human-Computer
Interaction, Optimization and Robotic
Applications (HORA). 2023.

[13] Gurevin B, Gulturk F, Yildiz M,
Pehlivan I, Nguyen TT, Caliskan F, et al.
A Novel GUI Design for Comparison of
ROS-Based Mobile Robot Local
Planners. IEEE Access. 2023 Jan
1;11:125738–48.

[14] Antunes LA. Avaliação de
Algoritmos de Planejamento de Rota
para Navegação de Robóica Móvel
[Undergraduate Thesis]. State
University of Western Paraná; 2024.

[15] Chu J, Zhao F, Bakshi S, Yan Z,
Chen D. Risk-Aware Path Planning with
Uncertain Human Interactions. 2021
American Control Conference (ACC).
2021.

[16] Manwal M, Dhabliya D, Jweeg M,
Habelalmateen MI, Jabbar KA, Jaafar
AHM, et al. A Development of Utilising
MR to get Dynamic Motion to Solve
Applications in Space. Vol. 10, 2024 4th
International Conference on Advance
Computing and Innovative Technologies
in Engineering (ICACITE). 2024.

[17] Hosni MM, Kheiri A, Najafi E.
Target-driven Navigation of a Mobile
Robot using an End-to-end Deep
Learning Approach. 2023 14th
International Conference on Information
and Knowledge Technology (IKT). 2023.

[18] Liu X, Wang L, Fan Y, Liang S.
Research on Map partitioning and
Preprocessing Algorithms for Global
Path Planning. 2023 4th International
Conference on Electronic
Communication and Artificial
Intelligence (ICECAI). 2023.

[19] Wei L, Lim KG, Tan MK, Liau CF,
Wang T, Teo KTK. Autonomous Path
Optimization in Unfamiliar Map Through
Deep Reinforcement Learning. 2023
IEEE International Conference on
Artificial Intelligence in Engineering and
Technology (IICAIET). 2023.

[20] Gupta S, Asha CS, D’Souza JM.
Implementation and Comparison of BUG
Algorithms on ROS. 2023 2nd

International Conference for Innovation
in Technology (INOCON). 2023.

	1. Introduction
	2. Methodology
	3. Path Planning
	4. Navigation2 Algorithms
	5. Comparison
	6. Different Approaches
	7. Conclusions
	8. References

