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Abstract. It is often common for scientists to come across a huge set of data with many variables 

after conducting a certain experiment and their objective is to analyse and conclude afterwards. 

However, these results are many times nonlinear, and a definitive answer is not always 

straightforward. The goal of this study was to discuss the application of Linear Algebra in Multiple 

Linear Regression models, thus problems like this mentioned in the beginning can be solved in a 

much faster way using matrices and their operations. Additionally, the knowledge of computer 

programming can also be of great advantage, for some programming languages, such as Python, 

already have most of the methods implemented, therefore making the entire process much faster. 

Based on that, a set of data was extracted and, using both techniques described, it was possible 

to combine them and build a model in which our data fitted the dotted line perfectly. This 

indicates an excellent model and shows us that Linear Algebra can be an extremely useful tool 

when it comes to building a good linear model, applying our prior knowledge of mathematics plus 

coding, hence, obtaining our result. 
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1. Introduction 

Multiple Linear Regression consists of finding a 
linear relationship between a set of data containing 
the features, x variables, and the targets, y variable. 
In order to establish this relationship, we need to find 
the least square estimators. To do that, we would 
normally work with systems of equations, which can 
be exceedingly difficult when working with a large 
set of data. On the other hand, we will make use of 
Linear Algebra, a mathematical tool that uses 
matrices and their operations to solve this type of 
problem.  

2. Research Methods 

The study was conducted by using a set of data 
from a textbook [1]. A sample of it can be seen in 
Table 1. By developing a Python program [2] using 
the concepts of Linear Algebra, the results were 
obtained. Columns x1, x2 and x3 correspond to three 
different semiconductors, respectively: Emitter-RS, 
Base-RS and Emitter-to-Base (RS). As for the y 
column, it will store the values for the device HFE [1]. 

 

                       Tab. 1 – Semiconductor Data 

y x1 x2 x3 

128.4 14.62 226 7 

52.62 15.63 220 3.375 

113.9 14.62 217.4 6.375 

98.01 15 220 6 

139.9 14.5 226.5 7.625 

 

In subsection 2.1, it is the description of the method 
to find the Multiple Linear Regression equation. 

2.1 Multiple Linear Regression Equation 

A thorough review of the theory was helpful to 
understand the whole concept of applying Linear 
Algebra in Multiple Linear Regression. The problem 
comes down to two simple equations, the first one 
describing how the model will look like, according to 
Equation 1, and the other one showing the formula to 
find the beta vector, according to Equation (3). They 
summarize our whole problem.  

Equation (1) is the basis of Multiple Linear 



 

 

Regression, which β1, β2, β3,…, βp correspond to the 
parameters, and ε is the residuals. In statistical 
problems, this last one is quite common to appear, so 
we must take it into account. As for Equation (2), it is 
a simplified version of Equation 1, for it shows how 
our model will look like when putting it into a matrix 

form. To find β̂, we need to minimize the residuals by 
applying the first order condition, but this is 
something that will not be covered in this paper. To 
see more about it, have a look at [3]. 

𝑌 =  𝛽0 +  𝛽1 ∗ 𝑥1 +  𝛽2 ∗ 𝑥2 +. . . + 𝛽𝑝 ∗ 𝑥𝑝 +
 𝜖  (1) 

 𝑌 =  𝛽̂𝑋 + 𝜖  (2) 
This is when Equation (3), called the Normal 

Equation, is going to show up. It tells us how to find 
the beta vector and the way to do it is applying matrix 
operations, such as transposition and inversion, as 
well as other ones. We shall take a careful look at how 
it works. 

𝛽 ̂= (XTX)-1XTY (3) 
A matrix and a vector will be needed for this 

problem, 𝑋 and 𝑌, respectively. For the model to 
work, 𝑋 must have more rows than columns. It is 
called the model matrix, and it will have fixed values, 
which will be the independent ones, whereas vector 
𝑌 is the vector of targets, which contains the 
dependent values, and they are random. Notice that 
an extra column containing only ones was included 
in our matrix 𝑋. According to [4], this is because our 
function 𝛽0 +  𝛽1 ∗ 𝑥1 +  𝛽2 ∗ 𝑥2 +. . . + 𝛽𝑝 ∗ 𝑥𝑝 is 
linear in 𝛽, but not in x, due to 𝛽0. By adding the extra 
column, our model becomes linear in the feature 
space. In our problem, X will hold the values 
corresponding to x1, x2 and x3, and vector Y the 
values for the y. 

Now that we have seen a full description of how 
to get to the Multiple Linear Regression equation, we 
will learn step by step which operations are done in 
Equation 3. 

1. XT – transposition of matrix X, i.e., the rows 
and columns are swapped. 

2. XTX – matrices XT and X are multiplied 
obeying the rules of matrix multiplication. 

3. (XTX)-1 – the previous operation will result in 
a new matrix which will be inversed. 

4. XTY – same thing done in step 2, except now 
matrices XT and Y are multiplied. 

5. The matrices obtained in steps 3 and 4 will 
be multiplied thus resulting in the beta 
vector. 

We have finished analysing the entire process, 
including the use of matrix operations with the 
purpose of finding our least square estimators. We 
will now have a look at how our results look like, 
applying this process in a Python code carefully 
developed. 

3. Discussion and Results 

3.1 The Code 

All the process was done in a worldwide 
popular programming language, Python. Now, 
Python has many built-in functions and modules that 
could help us solve our problem in very few lines. 
Instead, my intention was to develop the complete 
process from scratch, only using the module NumPy 
to multiply our matrices and solve our equation. A 
few parts of the code will be shown below, along with 
their explanations. As it has already been said, the 
rest of the it can be seen on [2]. 

Part 1 – Adding the extra column with just ones: 

           X = np.insert(X,0,1,axis=1) 

Part 2 – the Normal Equation and how it was 
done: 

''' 

THIS IS WHERE WE'LL BE APPLYING OUR 
ALGORITHM USING LINEAR ALGEBRA 

WITH THE HELP OF PYTHON LIBRARY NUMPY. 

- X_TRANSPOSE = X.T => TRANSPOSES MATRIX X 

- XtX = np.dot(X_transpose,X) => FUNCTION dot() 
DOES THE MATRIX MULTIPLICATION 

- THE SAME THING FOR XtY 

- beta = np.linalg.solve(XtX,XtY) => FUNCTION 
SOLVE() SOLVES A MATRIX EQUATION 

JUST LIKE THE ONE WE HAVE IN OUR PROBLEM 
AND RETURNS THE BETA VECTOR 

''' 

X_transpose = X.T 

XtX = np.dot(X_transpose,X) 

XtY = np.dot(X_transpose,y) 

beta = np.linalg.solve(XtX,XtY) 

print(f'y = {beta[0]} + {beta[1]}*x1 + {beta[2]}*x2 + 
{beta[3]}*x3') 

3.2 Least Square Estimators 

Having written the code and run it, it will return 
the following coefficients: 𝛽0 = 47.17, 𝛽1 = −9.74, 
𝛽2 = 0.43 and β3 = 18.24. Therefore, our equation 
will be: 

𝑦 = 47.17 − 9.74 ∗ 𝑥1 + 0.43 ∗ 𝑥2 + 18.24 ∗ 𝑥3 
(4) 
Equation (4) is our Multiple Linear Regression 

final equation. These values, when put inside the beta 



 

 

vector, are called the least square estimators and 

they will be named β ̂0, β ̂1, β ̂2, . . . , β ̂p. They must 
obey two particularly important properties. The first 
one is regarding the expected value and the other has 
to do with the covariance. We shall look at them 
further in this article.  

3.3 Graph 

Other than looking at numbers, it is also a great 
idea to see how the result looks graphically. This 
allows us to have a visual representation of our 
model. Notice that the data points, in red, are 
remarkably close to the fitted line, in green, which is 
an excellent sign. If the points were scattered, that is, 
far from the straight line, this would mean that the 
model is not good, therefore changes would have to 
be made. Figure 1 below shows the linear correlation 
between the semiconductors and the device. The red 
points are plotted based on the relationship between 
the predicted values and the real ones. As for the 
dashed green line, it fits these plots. 

 

Fig. 1 – Semiconductor Data – Multiple Linear 
Regression 

We have seen the Multiple Linear Regression 
equation and how it looks like in a linear graph. We 
will now analyse our residuals, the properties of the 
least square estimators, the Coefficient of 
Determination and predictions that could be made 
using our model. 

3.4 Residuals 

The difference between the observation yi and 
the fitted value ŷi is a residual, say, ei = yi - ŷi [1]. As well 
as the graph seen above, residuals are also an 
excellent way to see how good our model is. 
Remember that our goal in Multiple Linear 
Regression is to minimize our residuals, so that we 
have the best model. Table 2 shows five residuals. 
The rest can be seen in the Python code on [2]. 

 

 

 

                Tab.2 - Residuals 

Residuals 

-0.9003915 

1.832658673 

-0.31871551 

-6.7838394 

-2.18117015 

 

3.4.1 Estimating σ² 
Regarding the residuals, there is one parameter 

related to it that is interesting to analyse and that is 
their variance, which we normally call σ²(sigma-
squared). Now, σ² is an unbiased estimator, which 
means that the expected value of the parameter is 
equal to its real one. To calculate it, we first need to 
calculate the Sum of Squares Errors (SSE). When 
dealing with statistics, we apply the following 
formula: 

𝑆𝑆𝐸 =  ∑ 𝜖²𝑛
𝐼=1  (5) 

On the other hand, we will use the same matrix 
operations as seen previously to find the beta vector. 
Equation (5) can be looked at as the multiplication 
between the residuals vector transposed and its own. 

Knowing that 𝝐 is 𝒀 − ŷ and that is equal to y-X𝜷 ̂, the 
result will be: 

𝑆𝑆𝐸 =  𝑌𝑇𝑌 − 𝛽 ̂𝑋𝑇𝑌   (6) 
Equation 6 is just as the same as Equation 5 but 

working with matrices. After doing this, we divide 
the result by n-p, which n equals the number of 
columns we have, and p equals the number of 
parameters βk. Given n=20 and p = 4 (𝛽0, 𝛽1, 𝛽2, β3), 
Equation (7) gives us our result. 

    𝜎² =  
𝑆𝑆𝐸

𝑛−𝑝
 =  12.108 (7) 

Therefore, our variance of the residuals will be 
12.108. 

3.5  Properties of the Least Square 
Estimators 

3.5.1 Expected Value (E) 

In probability and statistics, an expected value is 
the mean value of a range of data. In Multiple Linear 
Regression, we want the expected value of our least 
square estimators equal to the regression coefficient. 
Now, when this happens, we say that our estimator is 
unbiased. The demonstration below is based on the 
same one seen in [1] and uses Equation 3 to do it. In 
the end, it really shows that the expected value of the 
least square estimators is, in fact, unbiased 
estimators of the regression coefficients. 

E(𝛽̂) = E[((XTX)-1XTY) (8) 

E(𝛽̂) = E[((XTX)-1XT(𝛽̂𝑋 + 𝜖)] (8.1) 

E(𝛽̂) = E[(XTX)-1XTX 𝛽+(XTX)-1XT 𝜖)] (8.2) 



 

 

E(𝛽̂) = E[(XTX)-1XTX 𝛽] + E[(XTX)-1XT 𝜖)] 
(8.3) 

 
Considering that the expected value of the 

sum equals the sum of the expected values, we can 
separate Equation (8.2) into two, resulting in 
Equation (8.3). It is known that E(e) = 0 and XTX)-1XTX  
equals the identity matrix, I, Therefore, our result 
will be: 

E(𝛽̂) = E[I 𝛽] + 0 (8.4) 

E(𝛽̂) =  𝛽 (8.5) 
 

Therefore, we can see that the expected 
value of our estimators is, as matter of fact, unbiased.  

3.5.2 Covariance (cov) 

 This second property deals with the 
covariance. When working with regression models, 
we will be working with a matrix that derives from 
the multiplication of two matrices we have already 
seen in Equation 3. It is (XTX) -1. When doing this 
operation, we will notice that the result will be a 
symmetric matrix, which has the aij elements equal to 
the aji ones. More than that, if we multiply it by σ², 
there will be a new matrix in which its diagonal 
elements will tell us the variances of 

𝛽 ̂0, 𝛽 ̂1, 𝛽 ̂2, . . . , 𝛽 ̂𝑘, and the off-diagonal ones will 
store the covariances. Based on the calculations 
shown in [1], the same thing was done using Python 
on [2]. 

3.6 Coefficient of Determination (R²) 

A parameter that we use when we want to 
know whether our model is good or not is called the 
Coefficient of Determination. This is a parameter that 
varies between 0 and 1. According to [1], the R² is 
often referred to as the amount of variability in the 
data explained or account by the regression model. 
To calculate it, we will be using two metric variables, 
one of which we have already seen when calculating 
σ², the so-called SSE in Equation (6), and a new one 
called SST (Sum of Squares Total). Now, when 
calculating SST, we will need the average of the 
values in vector Y and the vector itself. The formula 
will be the square sum of their difference, from the 
first value to the Nth one. 

𝑆𝑆𝑇 =  ∑ (𝑌𝑖 − 𝑌̅𝑵
𝐼=1 )²  (9) 

Having calculated SST, we can now find R², 
which can be calculated by the subtraction of 1 and 
the ratio of SSE and SST. Mathematically, that will be: 

     𝑅² =  1 −
𝑆𝑆𝐸

𝑆𝑆𝑇
 (10) 

The entire calculation was done in [2]. After 
done, it was found out that R² = 0.994, which 
shows that our model has 99.4% variability in 
the data. 

3.7 Predictions 

With the points and the residuals, we can make 

predictions. According to [5], when one uses MLR for 
prediction, one is using a sample to create a 
regression equation that would optimally predict a 
particular phenomenon within a particular 
population. This leads to the conclusion that they 
help us know the future results of our problem. Table 
3 shows five. As well as the residuals, the rest of the 
predictions can be seen on [2]. 

          Tab.3 – Predictions  

 
 
 
 
 
 
 
 
 
 
All the results above help us to have a basic 
understanding of what the results will be. For 
example, if we consider x1 = 14.5, x2 = 220 and x3=5, 
we will have: 

ŷ = 47.17 − 9.74 ∗ 14.5 + 0.43 ∗ 220 + 18.24 ∗  5   

ŷ =  91.42398577 

4. Conclusion 

In this paper, we discussed about the use of 
Linear Algebra in Multiple Linear Regression. Linear 
Algebra is a field of mathematics used in many areas 
and Regression models is one of them. Following a 
complete review of the theory and using a set of data 
to illustrate our problem, we could see that the 
calculations become much easier when making use of 
matrix operations, such as transposition and 
inversion, instead of calculating all the statistical 
parameters that are needed to make the model. With 
the use of Python, an excellent tool for Linear Algebra 
problems and especially Linear Regression ones as 
well, the entire process becomes much faster for, as 
seen in the code referenced, the programming 
language already has many of the methods built in. 
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