
UNIGOU Remote 2024
Czech-Brazilian Academic Program

Application of Linear Algebra in Multiple Linear
Regression.

Thiago Marques Martins

Faculty of Engineering, Rio de Janeiro State University, Rio de Janeiro, Brazil, thiagoann@gmail.com.

Abstract. It is often common for scientists to come across a huge set of data with many variables

after conducting a certain experiment and their objective is to analyse and conclude afterwards.

However, these results are many times nonlinear, and a definitive answer is not always

straightforward. The goal of this study was to discuss the application of Linear Algebra in Multiple

Linear Regression models, thus problems like this mentioned in the beginning can be solved in a

much faster way using matrices and their operations. Additionally, the knowledge of computer

programming can also be of great advantage, for some programming languages, such as Python,

already have most of the methods implemented, therefore making the entire process much faster.

Based on that, a set of data was extracted and, using both techniques described, it was possible

to combine them and build a model in which our data fitted the dotted line perfectly. This

indicates an excellent model and shows us that Linear Algebra can be an extremely useful tool

when it comes to building a good linear model, applying our prior knowledge of mathematics plus

coding, hence, obtaining our result.

Keywords. Linear Algebra, Multiple Linear Regression, Least Square Estimators, Python,
matrices, residuals, predictions, Coefficient of Determination

1. Introduction

Multiple Linear Regression consists of finding a
linear relationship between a set of data containing
the features, x variables, and the targets, y variable.
In order to establish this relationship, we need to find
the least square estimators. To do that, we would
normally work with systems of equations, which can
be exceedingly difficult when working with a large
set of data. On the other hand, we will make use of
Linear Algebra, a mathematical tool that uses
matrices and their operations to solve this type of
problem.

2. Research Methods

The study was conducted by using a set of data
from a textbook [1]. A sample of it can be seen in
Table 1. By developing a Python program [2] using
the concepts of Linear Algebra, the results were
obtained. Columns x1, x2 and x3 correspond to three
different semiconductors, respectively: Emitter-RS,
Base-RS and Emitter-to-Base (RS). As for the y
column, it will store the values for the device HFE [1].

 Tab. 1 – Semiconductor Data

y x1 x2 x3

128.4 14.62 226 7

52.62 15.63 220 3.375

113.9 14.62 217.4 6.375

98.01 15 220 6

139.9 14.5 226.5 7.625

In subsection 2.1, it is the description of the method
to find the Multiple Linear Regression equation.

2.1 Multiple Linear Regression Equation

A thorough review of the theory was helpful to
understand the whole concept of applying Linear
Algebra in Multiple Linear Regression. The problem
comes down to two simple equations, the first one
describing how the model will look like, according to
Equation 1, and the other one showing the formula to
find the beta vector, according to Equation (3). They
summarize our whole problem.

Equation (1) is the basis of Multiple Linear

Regression, which β1, β2, β3,…, βp correspond to the
parameters, and ε is the residuals. In statistical
problems, this last one is quite common to appear, so
we must take it into account. As for Equation (2), it is
a simplified version of Equation 1, for it shows how
our model will look like when putting it into a matrix

form. To find β̂, we need to minimize the residuals by
applying the first order condition, but this is
something that will not be covered in this paper. To
see more about it, have a look at [3].

𝑌 = 𝛽0 + 𝛽1 ∗ 𝑥1 + 𝛽2 ∗ 𝑥2 +. . . + 𝛽𝑝 ∗ 𝑥𝑝 +
 𝜖 (1)

 𝑌 = �̂�𝑋 + 𝜖 (2)
This is when Equation (3), called the Normal

Equation, is going to show up. It tells us how to find
the beta vector and the way to do it is applying matrix
operations, such as transposition and inversion, as
well as other ones. We shall take a careful look at how
it works.

𝛽 ̂= (XTX)-1XTY (3)
A matrix and a vector will be needed for this

problem, 𝑋 and 𝑌, respectively. For the model to
work, 𝑋 must have more rows than columns. It is
called the model matrix, and it will have fixed values,
which will be the independent ones, whereas vector
𝑌 is the vector of targets, which contains the
dependent values, and they are random. Notice that
an extra column containing only ones was included
in our matrix 𝑋. According to [4], this is because our
function 𝛽0 + 𝛽1 ∗ 𝑥1 + 𝛽2 ∗ 𝑥2 +. . . + 𝛽𝑝 ∗ 𝑥𝑝 is
linear in 𝛽, but not in x, due to 𝛽0. By adding the extra
column, our model becomes linear in the feature
space. In our problem, X will hold the values
corresponding to x1, x2 and x3, and vector Y the
values for the y.

Now that we have seen a full description of how
to get to the Multiple Linear Regression equation, we
will learn step by step which operations are done in
Equation 3.

1. XT – transposition of matrix X, i.e., the rows
and columns are swapped.

2. XTX – matrices XT and X are multiplied
obeying the rules of matrix multiplication.

3. (XTX)-1 – the previous operation will result in
a new matrix which will be inversed.

4. XTY – same thing done in step 2, except now
matrices XT and Y are multiplied.

5. The matrices obtained in steps 3 and 4 will
be multiplied thus resulting in the beta
vector.

We have finished analysing the entire process,
including the use of matrix operations with the
purpose of finding our least square estimators. We
will now have a look at how our results look like,
applying this process in a Python code carefully
developed.

3. Discussion and Results

3.1 The Code

All the process was done in a worldwide
popular programming language, Python. Now,
Python has many built-in functions and modules that
could help us solve our problem in very few lines.
Instead, my intention was to develop the complete
process from scratch, only using the module NumPy
to multiply our matrices and solve our equation. A
few parts of the code will be shown below, along with
their explanations. As it has already been said, the
rest of the it can be seen on [2].

Part 1 – Adding the extra column with just ones:

 X = np.insert(X,0,1,axis=1)

Part 2 – the Normal Equation and how it was
done:

'''

THIS IS WHERE WE'LL BE APPLYING OUR
ALGORITHM USING LINEAR ALGEBRA

WITH THE HELP OF PYTHON LIBRARY NUMPY.

- X_TRANSPOSE = X.T => TRANSPOSES MATRIX X

- XtX = np.dot(X_transpose,X) => FUNCTION dot()
DOES THE MATRIX MULTIPLICATION

- THE SAME THING FOR XtY

- beta = np.linalg.solve(XtX,XtY) => FUNCTION
SOLVE() SOLVES A MATRIX EQUATION

JUST LIKE THE ONE WE HAVE IN OUR PROBLEM
AND RETURNS THE BETA VECTOR

'''

X_transpose = X.T

XtX = np.dot(X_transpose,X)

XtY = np.dot(X_transpose,y)

beta = np.linalg.solve(XtX,XtY)

print(f'y = {beta[0]} + {beta[1]}*x1 + {beta[2]}*x2 +
{beta[3]}*x3')

3.2 Least Square Estimators

Having written the code and run it, it will return
the following coefficients: 𝛽0 = 47.17, 𝛽1 = −9.74,
𝛽2 = 0.43 and β3 = 18.24. Therefore, our equation
will be:

𝑦 = 47.17 − 9.74 ∗ 𝑥1 + 0.43 ∗ 𝑥2 + 18.24 ∗ 𝑥3
(4)
Equation (4) is our Multiple Linear Regression

final equation. These values, when put inside the beta

vector, are called the least square estimators and

they will be named β ̂0, β ̂1, β ̂2, . . . , β ̂p. They must
obey two particularly important properties. The first
one is regarding the expected value and the other has
to do with the covariance. We shall look at them
further in this article.

3.3 Graph

Other than looking at numbers, it is also a great
idea to see how the result looks graphically. This
allows us to have a visual representation of our
model. Notice that the data points, in red, are
remarkably close to the fitted line, in green, which is
an excellent sign. If the points were scattered, that is,
far from the straight line, this would mean that the
model is not good, therefore changes would have to
be made. Figure 1 below shows the linear correlation
between the semiconductors and the device. The red
points are plotted based on the relationship between
the predicted values and the real ones. As for the
dashed green line, it fits these plots.

Fig. 1 – Semiconductor Data – Multiple Linear
Regression

We have seen the Multiple Linear Regression
equation and how it looks like in a linear graph. We
will now analyse our residuals, the properties of the
least square estimators, the Coefficient of
Determination and predictions that could be made
using our model.

3.4 Residuals

The difference between the observation yi and
the fitted value ŷi is a residual, say, ei = yi - ŷi [1]. As well
as the graph seen above, residuals are also an
excellent way to see how good our model is.
Remember that our goal in Multiple Linear
Regression is to minimize our residuals, so that we
have the best model. Table 2 shows five residuals.
The rest can be seen in the Python code on [2].

 Tab.2 - Residuals

Residuals

-0.9003915

1.832658673

-0.31871551

-6.7838394

-2.18117015

3.4.1 Estimating σ²
Regarding the residuals, there is one parameter

related to it that is interesting to analyse and that is
their variance, which we normally call σ²(sigma-
squared). Now, σ² is an unbiased estimator, which
means that the expected value of the parameter is
equal to its real one. To calculate it, we first need to
calculate the Sum of Squares Errors (SSE). When
dealing with statistics, we apply the following
formula:

𝑆𝑆𝐸 = ∑ 𝜖²𝑛
𝐼=1 (5)

On the other hand, we will use the same matrix
operations as seen previously to find the beta vector.
Equation (5) can be looked at as the multiplication
between the residuals vector transposed and its own.

Knowing that 𝝐 is 𝒀 − ŷ and that is equal to y-X𝜷 ̂, the
result will be:

𝑆𝑆𝐸 = 𝑌𝑇𝑌 − 𝛽 ̂𝑋𝑇𝑌 (6)
Equation 6 is just as the same as Equation 5 but

working with matrices. After doing this, we divide
the result by n-p, which n equals the number of
columns we have, and p equals the number of
parameters βk. Given n=20 and p = 4 (𝛽0, 𝛽1, 𝛽2, β3),
Equation (7) gives us our result.

 𝜎² =
𝑆𝑆𝐸

𝑛−𝑝
 = 12.108 (7)

Therefore, our variance of the residuals will be
12.108.

3.5 Properties of the Least Square
Estimators

3.5.1 Expected Value (E)

In probability and statistics, an expected value is
the mean value of a range of data. In Multiple Linear
Regression, we want the expected value of our least
square estimators equal to the regression coefficient.
Now, when this happens, we say that our estimator is
unbiased. The demonstration below is based on the
same one seen in [1] and uses Equation 3 to do it. In
the end, it really shows that the expected value of the
least square estimators is, in fact, unbiased
estimators of the regression coefficients.

E(�̂�) = E[((XTX)-1XTY) (8)

E(�̂�) = E[((XTX)-1XT(�̂�𝑋 + 𝜖)] (8.1)

E(�̂�) = E[(XTX)-1XTX 𝛽+(XTX)-1XT 𝜖)] (8.2)

E(�̂�) = E[(XTX)-1XTX 𝛽] + E[(XTX)-1XT 𝜖)]
(8.3)

Considering that the expected value of the

sum equals the sum of the expected values, we can
separate Equation (8.2) into two, resulting in
Equation (8.3). It is known that E(e) = 0 and XTX)-1XTX
equals the identity matrix, I, Therefore, our result
will be:

E(�̂�) = E[I 𝛽] + 0 (8.4)

E(�̂�) = 𝛽 (8.5)

Therefore, we can see that the expected
value of our estimators is, as matter of fact, unbiased.

3.5.2 Covariance (cov)

 This second property deals with the
covariance. When working with regression models,
we will be working with a matrix that derives from
the multiplication of two matrices we have already
seen in Equation 3. It is (XTX) -1. When doing this
operation, we will notice that the result will be a
symmetric matrix, which has the aij elements equal to
the aji ones. More than that, if we multiply it by σ²,
there will be a new matrix in which its diagonal
elements will tell us the variances of

𝛽 ̂0, 𝛽 ̂1, 𝛽 ̂2, . . . , 𝛽 ̂𝑘, and the off-diagonal ones will
store the covariances. Based on the calculations
shown in [1], the same thing was done using Python
on [2].

3.6 Coefficient of Determination (R²)

A parameter that we use when we want to
know whether our model is good or not is called the
Coefficient of Determination. This is a parameter that
varies between 0 and 1. According to [1], the R² is
often referred to as the amount of variability in the
data explained or account by the regression model.
To calculate it, we will be using two metric variables,
one of which we have already seen when calculating
σ², the so-called SSE in Equation (6), and a new one
called SST (Sum of Squares Total). Now, when
calculating SST, we will need the average of the
values in vector Y and the vector itself. The formula
will be the square sum of their difference, from the
first value to the Nth one.

𝑆𝑆𝑇 = ∑ (𝑌𝑖 − �̅�𝑵
𝐼=1)² (9)

Having calculated SST, we can now find R²,
which can be calculated by the subtraction of 1 and
the ratio of SSE and SST. Mathematically, that will be:

 𝑅² = 1 −
𝑆𝑆𝐸

𝑆𝑆𝑇
 (10)

The entire calculation was done in [2]. After
done, it was found out that R² = 0.994, which
shows that our model has 99.4% variability in
the data.

3.7 Predictions

With the points and the residuals, we can make

predictions. According to [5], when one uses MLR for
prediction, one is using a sample to create a
regression equation that would optimally predict a
particular phenomenon within a particular
population. This leads to the conclusion that they
help us know the future results of our problem. Table
3 shows five. As well as the residuals, the rest of the
predictions can be seen on [2].

 Tab.3 – Predictions

All the results above help us to have a basic
understanding of what the results will be. For
example, if we consider x1 = 14.5, x2 = 220 and x3=5,
we will have:

ŷ = 47.17 − 9.74 ∗ 14.5 + 0.43 ∗ 220 + 18.24 ∗ 5

ŷ = 91.42398577

4. Conclusion

In this paper, we discussed about the use of
Linear Algebra in Multiple Linear Regression. Linear
Algebra is a field of mathematics used in many areas
and Regression models is one of them. Following a
complete review of the theory and using a set of data
to illustrate our problem, we could see that the
calculations become much easier when making use of
matrix operations, such as transposition and
inversion, instead of calculating all the statistical
parameters that are needed to make the model. With
the use of Python, an excellent tool for Linear Algebra
problems and especially Linear Regression ones as
well, the entire process becomes much faster for, as
seen in the code referenced, the programming
language already has many of the methods built in.

5. Acknowledgement

I would like to express my deepest gratitude to
Professor Hugo de Souza Oliveira, Ph.D., who
reviewed this work and gave me useful feedback.

6. References

[1] Montgomery D., Runger G. Applied Statistics
and Probability for Engineers. John Wiley and
Sons, Incorporated, Hoboken; 2013; 920 p.

[2] Martins T. Application of Linear Algebra in
Multiple Linear Regression. Available from:
Application of Linear Algebra in Multiple Linear
Regression.ipynb - Colab (google.com)

[3] Woolridge J. Introductory to Econometrics: A
Modern Approach. Cengage Learning, Boston;

Predictions

129.30039315

50.78734327

114.21871551

104.7938394

142.08117015

https://colab.research.google.com/drive/1o5tyftbQRUHbKXEIDDIkqtEA3obnSAsY
https://colab.research.google.com/drive/1o5tyftbQRUHbKXEIDDIkqtEA3obnSAsY

2020; 816 p.

[4] Kroese P., Botev Z., Taimre T., Vaisman R.
Data Science and Machine Learning:
Mathematical and Statistical Methods. CRC Press,
Boca Raton; 2019; 532 p.

[5] Osborne, J. Prediction in Multiple Linear
Regression. Practical Assessment, Research and
Evaluation. 2000; 7(2).

