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Abstract. The logistic process of loading cargo into containers encompasses all industries, being

a crucial step to improve the delivery of goods. In order to obtain competitive advantages,

companies seek to maximize the total volume or profit of the loaded items, while also

minimizing the number of containers needed to deliver products. Moreover, the loading process

may be complicated by constraints such as weight limits and box orientations. Though it is

mathematically possible to model container loading problems (CLPs), solving them to optimality

is practically impossible, due to their combinatorial nature. Thus, most of the research on this

topic has focused on heuristics that produce good solutions in an acceptable amount of time. In

light of these facts, this overview investigates the types of CLPs that have been proposed and

considered by researchers, and the constraints that have been tackled the most. We also

investigate a few heuristics in greater detail, based on their importance and ability to illustrate

the different techniques that can be used to solve CLPs. We observe that most researchers have

focused on solving CLPs with a wide variety of boxes and few container types. Furthermore, the

average number of constraints considered in papers has changed little in three decades. This

indicates the existence of many gaps in the literature. In conclusion, we hypothesize that the

almost stagnant exploration of CLPs may be explained by the authors' focus on improving the

efficiency of container loading based on previous works that are already biased towards certain

problem configurations. We conclude that society will benefit from efforts to close research gaps

and make CLP software more accessible to laypersons.
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1. Introduction

Container loading problems (CLPs) are
combinatorial optimization problems in which the
goal is to orthogonally load boxes into one or more
containers, subject to a set of contextual constraints,
e.g. weight or volume limits, compatibility and
stackability of boxes. Typically, when dealing with a
single container, the objective is to minimize the
unused volume. For multiple containers (MCLP), the
goal is usually to minimize the number of used
containers [1]. Since they are generalizations of the
knapsack problem (KP), (M)CLPs are NP-hard,
which means polynomial-time algorithms for
solving them are unknown and unlikely to be found
[2]. Regardless, the speed with which computers can
solve such problems to near-optimality means the
study of optimization techniques is a necessity in
nowaday’s competitive landscape.

This overview on (M)CLPs is structured as follows:
Section 2 provides more details on the methods and

goals used to investigate the subject. Section 3
explains the main concepts used to classify (M)CLPs,
as well as the types of constraints that such
problems may include that have so far been
identified in the literature. The section closes with a
brief view into the state and trends of (M)CLP
research, and what gaps exist in the field. Section 4
gives an overview on exact methods for solving
(M)CLPs and identifies the niches in which they are
useful. Section 5 presents a number of heuristics in
accordance with their categorization in the
literature. After mentioning heuristics of higher
complexity, the section comes to a close by
discussing how heuristics can be compared. Section
6 introduces decision support systems, programs
that have the potential to approximate researchers
and the needs of the industry. Finally, we present
our concluding remarks in section 7, based on the
development of the previous sections.

2. Research methods



This overview is based on two fronts: macro and
micro. The macro is the categorization of (M)CLPs,
particularly that of Bortfeldt et al. [3] and Fanslau et
al. [4]. The micro is part of a larger research project
that requires the reading of specific papers detailing
the techniques proposed by authors over the years.
We used the macro to contextualize (M)CLPs, the
trends and state of research, and the micro to
expand upon topics where examples are deemed
important. Special attention was dedicated to
heuristics, which have been the main focus of
researchers’ attention for decades.

The goals of this research are: (i) to characterize
(M)CLPs in a way that can be understood by
laypersons; (ii) to identify the terminology used by
researchers to differentiate problem types and
constraints; (iii) to describe a few of the
predominant methods proposed by researchers to
solve (M)CLPs; (iv) to analyze trends and identify
gaps in the literature. Additionally, we hope that the
conclusions drawn from the development of this
overview will be useful for the furtherance of our,
and the readers’, research projects.

3. An overview on problems

There are many types of (M)CLPs and constraints to
consider. This section’s overview is based on the
2012 literature review by Bortfeldt et al. [3], who
analyzed 163 papers on (M)CLPs, made available
between 1980 and 2011.

3.1 Problem types
The generic description of CLPs allows for many
different interpretations of the problem. We first
detail heterogeneity. We say that the set of items
considered in a problem is weakly heterogeneous
(WH) if the set of items is large and it is possible to
split them into a small number of categories.
Otherwise, the items are strongly heterogeneous
(SH). The same categorization is valid for containers
in MCLPs. When the number of containers available
is enough to load every item in the problem, we have
an input value minimization problem; that is, the goal
is to minimize the number of containers used.
Elsewise, the objective is to maximize the value or
volume of the loaded cargo, and we have an input
value maximization problem.

3.2 Constraint types
Bortfeldt et al. [3] consider 10 types of constraints
CLP heuristics may implement.Weight limits impose
a threshold on the total weight of the items within
the container, while weight distribution constraints
attempt to homogenize the sum of weights over
areas of the container floor. Loading priorities arise
when a subset of items must be loaded for a solution
to be valid, while orientation constraints limit the
number of rotations that may be applied to the
boxes. Stacking/load-bearing constraints require
that all boxes be able to handle the cumulative
weight of the boxes stacked on top, which is further
complicated by the fact that different box

orientations can endure different weights. In
complete-shipment heuristics, if a certain item is
loaded into the container, then all items in the same
category must also be loaded. Allocation constraints
are imposed in MCLPs when items in the same
category should be put in the same container, or
when incompatible item types (e.g. fragile and heavy
objects) should go in different containers.
Positioning constraints require that certain items be
placed in specific spaces within the container. For
instance, in some cases it might be desirable to keep
heavy objects closer to the container door, to
facilitate the unloading process. Stability constraints
are explicitly imposed to guarantee that items aren’t
damaged during transportation. An item is vertically
stable if it has no risk of falling to the ground or on
top of other boxes. Usually constraints demand that
boxes be partially or completely covered underneath
by the top of other boxes, or that at least their center
of gravity is covered. On the other hand, an item is
horizontally stable if its horizontal shifts are
insignificant as the container moves. Heuristics
often attempt to guarantee this stability by loading
boxes adjacent to each other, or to a container wall.
Finally, complexity constraints aim to make packings
simple enough that humans can understand and
arrange them quickly.

3.3 State of research
Of the papers reviewed by Bortfeldt et al. [3], 51.5%
consider minimization problems. Notably, most
efforts have gone towards solving either MCLPs with
identical containers or the CLP with SH items.
Meanwhile, the CLP with WH items and the MCLP
with WH items and containers have received very
little attention from researchers. On the other hand,
58.9% of papers consider maximization problems,
with significant attention being given to CLPs with a
large container. However, almost no research has
been done on MCLPs. Furthermore, with regards to
item types, 93.9% of papers deal exclusively with
cuboids.

On the topic of constraints, figure 1 compares the
growth in the number of papers published and the
average number of constraints considered per paper
in every quinquennium (and the 2010 to 2011
period).

Fig. 1 - Constraint averages and papers published on
(M)CLPs per period.



The notable increase in the number of papers is
accompanied by an inexpressive variation of the
constraint average over the years. Figure 2 presents
the findings by Bortfeldt et al. [3] on the number of
constraints considered by all the papers analyzed.

Fig. 2 - Percentage of papers implementing each
number of constraints from 1980 to 2011.

This chart gives us the insight that more than half
the papers presented in 31 years consider at most
one constraint type. According to Bortfeldt et al. [3],
the majority (70.6%) of papers take orientation
constraints into account, followed by stability
constraints (37.4%) and no constraints at all
(22.1%). This data, in conjunction with the data on
problem types, seems to indicate that most
problems tackle specific iterations of the (M)CLP. It
is worth noting that, in many cases, orientation
constraints are very easy to implement – a few
boolean variables describing which rotations are
allowed for a certain item should be enough for
most heuristics. Thus, it makes sense for this type of
constraint to be implemented so often.

4. Exact approaches

Given a mathematical model that adequately
assesses all the constraints needed to represent an
optimization problem, it is possible to arrive at an
optimal solution – hence the name “exact approach”.
Egeblad et al. [5] presented a relatively simple CLP
model that maximizes the profit of the selected
boxes. The coordinates and dimensions of box i are
represented by tuples (xi, yi, zi) and (wi, hi, di), and
the container has width W, height H and depth D.
The objective (expression (1)) is to maximize the
profit of a single container, with pi denoting the
profit of box i and si being a binary variable that
defines whether box i has been selected (1) or not
(0).
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This model constrains the boxes’ coordinates to the
container’s space. For example, for box i, constraints
(2) through (4) must be respected.
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To ensure that selected boxes do not overlap, binary
variables are introduced to dictate whether one box
is to the left (ℓij), right (rij), over (oij), under (uij),
behind (bij) or in front (fij) of the others. For
example, if box i must be to the left of j, then ℓij is 1,
and constraint (5) is valid.
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An earlier model by Chen et al. [6] includes binary
variables representing item rotations and considers
multiple containers. The objective becomes the
minimization of wasted space across the selected
containers.

Though applicable to problems with up to a few
dozen boxes, exact models are not viable for solving
large-scale CLP problems. Because they need binary
variables to work, these models are solved through
branch-and-bound methods. Such methods nullify
all integrality (binary) constraints, and instead
require that the affected variables be non-negative
real numbers, a process known as relaxation. The
problem is then divided into multiple subproblems
that are solved until a purely integer solution is
found and determined to be optimal [7]. Although
contemporary methods like branch-and-cut improve
this process, they are too slow, due to the sheer
number of subproblems generated. Egeblad et al. [5]
remark that their model’s binary variables further
complicate this issue, since they are tied to big M
constraints which, when relaxed, may increase the
number of subproblems to solve. The same is true
for the model by Chen et al [6]. Despite the
shortcomings of exact approaches to CLPs, they can
aid heuristics by solving simplified packing
problems that provide useful upper and lower
bounds to solutions [5,8]. For instance, a CLP with n
items may be turned into a KP as indicated in
expressions (6) through (8).

(6)max
𝑖=1

𝑛

∑ 𝑤
𝑖
ℎ

𝑖
𝑑

𝑖
𝑠

𝑖

(7)𝗌. 𝗍.  
𝑖=1

𝑛

∑ 𝑤
𝑖
ℎ

𝑖
𝑑

𝑖
𝑠

𝑖
 ≤  𝑊𝐻𝐷,

(8)𝑠
𝑖
 ∈ {0, 1}.

The objective (6) is to maximize the total volume of
selected items, constrained by the fact that this
volume must not exceed the container’s (7). Since
volume is treated as a one-dimensional property by
this model, it stands to follow that an optimal
solution to this KP is an upper bound to the
three-dimensional model by Egeblad et al [5].

5. Heuristics

Heuristics are computational methods that attempt
to produce solutions to problems in an adequate
amount of time, which often means a suboptimal
result is achieved. Humans frequently rely on
heuristics for problem-solving [9], and natural
processes are often taken as inspiration to compute
problems of high complexity [10]. Fanslau et al. [4]



divide CLP heuristics in the literature into three
categories, which we explore in the following
subsections.

5.1 Conventional heuristics
Heuristics classified as conventional are specifically
designed to deal with the CLP. Constructive
heuristics build a solution from nothing, while
improvement heuristics start with a solution and
modify it in the hopes of finding a better
configuration. There are “hybrid” heuristics that
implement both of these procedures. According to
Bortfeldt et al. [3], the wall-building method (WB)
proposed by George et al. [11] is the earliest
constructive heuristic proposed for the CLP. In the
WB, a single container is repeatedly sliced into
spaces that share its width and height, but with
reduced depth. Layers are then filled with boxes,
following a series of procedures that attempt to
minimize wasted space. The layer-building method
(LB) by Bischoff et al. [12] attempts to fill as much
base area as possible with pairs of item types, a
procedure that is applied from the ground up. The
block-building method by Eley [13] sorts boxes from
most to least voluminous and then places them in
the container, attempting to minimize unfillable
volumes. This results in the formation of blocks of
items of the same type, which is helpful for packing.
Figure 3 compares the spaces to fill in each iteration
of WB, LB, and BB. While WB is oriented by depth,
LB is oriented by height. BB considers filling all the
available spaces adjacent to the current load
configuration.

Fig. 3 - Comparison between WB, LB and BB spaces (in
red), respectively.

5.2 Metaheuristics
Metaheuristics are more abstract heuristics that can
be applied to a wide variety of problems – that is,
they are not specialized. These methods are
frequently based on natural processes, like
simulated annealing (SA), used by Egeblad et al. [5]
to solve CLPs. Firstly, boxes are enumerated from 1
to n, and three sequences of boxes (A, B and C) are
generated. The position of a box in one such
sequence reveals details about its placement relative
to the others. For example, if box i comes before j in
sequence A, that means i is to the left, above or in
front of j. By checking the boxes’ positions in the
other sequences, an exact conclusion about their
relative placements is reached. In order to improve
the initial solution, the SA randomly shuffles the
positions of items in each sequence and evaluates
the results. If the shuffling led to a better solution,
then it is accepted as the current solution.

Otherwise, a worse solution may still be accepted, as
a measure to avoid local optima. This procedure is
probabilistic, with the odds of acceptance
decreasing as the number of accepted solutions
increases.

Genetic algorithms (GA) are another popular type of
metaheuristic used to solve CLPs. For instance,
Gonçalves et al. [14] propose a method that encodes
packing sequences and orientations in
chromosomes. In a problem with M boxes, each
chromosome has 2M genes, with the first M genes
being used to describe the order in which to pack
boxes, and the last M genes defining their
orientation. To convert the genes into packings, a
procedure similar to the BB is used. In every
iteration of the method, the best-evaluated solutions
are randomly combined with other solutions in the
population by swapping genes from their
chromosomes. The resulting variety leads to
convergence in the long run. To avoid local optima, a
number of solutions suffer mutations from one
population to the next. Furthermore, multiple
populations are managed every iteration, with the
two best solutions across all populations being
inserted in all populations.

5.3 Tree search methods
Tree search methods perform incomplete or graph
searches for solutions to the CLP. Eley [13] proposed
one such procedure to improve solutions obtained
by their BB method. In this procedure, different
packing orders and orientations are considered per
tree node. Pisinger [15] proposed a heuristic that
fills containers layer by layer, solving KPs to
determine box positions. A tree search algorithm is
then employed to check if variations of the layers’
depths and the box columns’ widths result in better
solutions.

5.4 Highly-constrained heuristics
The approaches presented so far are relatively
simple. As such, they often serve as building blocks
for complex heuristics, like the one proposed by
Egeblad et al. [16] for loading furniture of different
sizes into a single container, which implements 7 of
the 10 constraints identified by Bortfeldt et al [3].
The heuristic begins by building placement
templates for larger items in a way that attempts to
ensure their stability. Then, it builds “quad-walls”
with 4 templates determined by tree search.
Afterwards, a greedy heuristic is used to place the
most voluminous medium-sized items in the
container. Finally, the placements of small items are
determined by a slightly modified version of the tree
search WB heuristic by Pisinger [15]. Another
example of a highly-constrained heuristic is the one
by Gendreau et al. [17], which employs
metaheuristics to solve problems combining MCLPs
with capacitated vehicle routing problems.

5.5 Comparisons between heuristics
As the great number of (M)CLPs implies, the
performance of heuristics depends largely on the



problem they are applied to. The WB alone proves
this point: George et al. [11] proposed two
procedures for selecting which boxes to fill spaces
with. Later, Bischoff et al. [18] compared the
procedures and realized that one consistently
outperformed the other for their test set.
Furthermore, they showed that the better WB
procedure was greater for solving problems with SH
sets of items, while by combining the WB with
another heuristic [12], the method performed better
for WH sets. Test sets are also used to compare
different heuristics, with the most popular being
listed by Bortfeldt et al [3].

6. Decision support systems

Decision support systems (DSSs) are tools that
provide an interface for the analysis and
visualization of solutions. While commercial DSSs
for (M)CLPs exist aplenty, DSSs are not the main
focus of academic research. In this section, we
describe a few of the DSSs that have been proposed
in the literature. A 2004 paper by Chien et al. [19]
attempts to improve a company’s loading process
with a graphical user interface (GUI). Users are
allowed to select between two container types
frequently used by the company. Then, they need
only choose the file containing the problem’s data
for the program to compute a solution using a WB
approach. A three-dimensional view of the container
with the boxes is produced, and the loading process
can be visualized step by step. A similar DSS was
proposed in 2010 by Dereli et al. [20]. However, in
order to build walls of items, this DSS uses a bee
colony metaheuristic with five parameters that are
up to the user to determine. Thus, this solution
might not be appropriate for laypersons. In 2022,
Pachón et al. [21] introduced a DSS that uses a
GRASP metaheuristic [22] to load cargo compliant
with orientation, stacking, weight limits, and
stability constraints. This implementation also
handles multi-drop, a special case of positioning
constraint that groups together items to be
delivered to the same client. Furthermore, cuboids
and irregular shapes, including cylinders, can be
loaded together.

7. Conclusions

Despite their seemingly simple nature, (M)CLPs are
full of intricacies that, from a purely abstract
perspective, can be ignored. Perhaps this serves as a
hypothesis for the overarching theme of deficits in
the literature identified by Bortfeldt et al [3]. While
initially authors focused on developing intuitive
methods for loading cargo (section 5.1), in recent
decades the interest has shifted to robust methods
that improve upon groundwork heuristics or
introduce stochastic elements to optimize solutions
as much as possible (sections 5.2 and 5.3). Hence,
most of the interest lies in improving cargo-loading
methods that disregard most practical constraints,
which could explain why so few constraints are
considered to this day. This could also elucidate why
most papers consider SH sets of items with either a

single container or a WH set of containers – because
there is a larger pool of heuristics and popular test
sets for comparison.

It is interesting to note that conventional heuristics,
though limited, serve as building blocks for most
(M)CLP methods. For instance, the WB by George et
al. [11] is so simple that adapting it to support
multiple containers and orientation constraints is
trivial. Furthermore, even though methods like the
ones proposed by Pisinger [15] and Egeblad et al.
[16] completely redefine the WB process, they still
draw inspiration from its layer-building approach.
Therefore, it seems reasonable to infer that the more
robust a method becomes, either in its search for
solution improvements or the number of constraints
it can handle, the greater its integration of previous
concepts and procedures.

Finally, it is worth noting that commercial DSSs are
built to accommodate as many constraints as
possible while staying relatively easy to use.
Academia seems to have much to learn from these
tools: The DSS by Pachón et al. [21] is an example of
software partially based on the industry’s standards,
with a simple interface and the implementation of
many more constraints than the average found in
the literature.

In conclusion, society has the most to gain from the
following concerted efforts by researchers: to
explore problem types that have mostly been
ignored in the literature; to implement robust
methods capable of solving problems with more
constraints than the average in the last decades; and
to seek ways to integrate these advancements in
DSSs that the layperson can use.
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