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Abstract. In the prebiotic context, before the emergence of the first forms of life, the introduction 

of cooperation in molecular evolution allowed replicators, molecules capable of self-replication, 

to form increasingly complex systems, culminating in the emergence of the first cells. However, 

it is not known how cooperation was introduced in this context. To understand this process, the 

competition between two types of replicators was analyzed: one that is selfish and another that 

is cooperative, that is, that catalyzes the replication of other replicators. Therefore, it was studied 

whether a small population of cooperative replicators can survive if introduced into a population 

dominated by selfish replicators, in order to analyze the effect of cooperation on competition 

between pre-biotic replicators. This competition was described by the replicator equation model. 

Two methodological approaches were used in this study: one analytical and the other 

computational. In the analytical approach, the equilibrium points of the system of differential 

equations of the studied model and the conditions for the local stability of these points were 

found. In the computational approach, two types of simulations were made: one deterministic 

and the other stochastic. The deterministic simulation was carried out based on traditional 

methods of numerical solution of differential equations and is more representative for large 

populations. The stochastic simulation was carried out using the Gillespie algorithm and is more 

representative for small populations. It is concluded that, in small total populations, susceptibility 

to random variations is more pronounced, reducing the chance of survival of cooperative 

replicators in most conditions. Conversely, even for small total populations, cooperative 

replicators can avoid extinction under conditions that would normally lead to extinction if the 

total population were larger. Furthermore, it was observed that the catalysis precision of 

cooperative replicators is a decisive factor: the greater the precision, the smaller the initial 

population of cooperative replicators needed so that the probability of extinction is less than 

50%. 
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1. Introduction 

Life is a phenomenon that has fascinated many 
generations of thinkers since the emergence of 
philosophy and science [1]. Despite this enormous 
interest that persists throughout the history of 
human thought, it is still not known how life 
originated. However, there are some clues about the 
best ways to understand the origin of life [2]. One of 
these paths consists of the self-organization of 
matter [3]. In this context, one scenario to study the 
emergence of life is the prebiotic evolution. 

As the name suggests, “pre” refers to the word 
“before” and “biotic” refers to the word “life”, that is, 
“prebiotic evolution” refers to evolution that 
occurred before the emergence of life. But which 
entities evolved if there was no life? For an entity to 
evolve, it needs to be able to reproduce, that is, 
transmit essential information to the upcoming 
generations [4]. In the prebiotic context, these 
evolving entities were self-replicating molecules, 
which can be called replicators [5]. 

The interactions between the replicators and the 
environment determined which replicators would 
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survive and which would become extinct [5]. But 
what were the forms of interaction between these 
prebiotic replicators? The first form is intrinsically 
related to the process of natural selection: 
competition [6]. Given that there were finite 
resources for replicators to replicate in the 
environment, they competed for these resources and 
the fittest replicated more, passing on their biological 
information to the next generations [6]. However, in 
the prebiotic context, there were no precise 
replication mechanisms, such that the mutation rate 
was high enough to prevent the formation of complex 
molecules, a problem known as the Eigen Paradox 
[7]. A solution to this difficulty was obtained through 
the introduction of hypercycles, which are 
cooperative replicators that catalyze each other's 
replication [8]. Thus, cooperation is another form of 
interaction between prebiotic replicators, allowing 
the formation of increasingly complex systems [9]. 

However, an intriguing question arises: in the 
prebiotic context, in which the environment was 
highly competitive, dominated by non-cooperative 
replicators, how did cooperation manage to be 
introduced into molecular evolution? The objective 
of this work is to study the possible answers to this 
question through the analysis of the competition 
between populations of non-cooperative and 
cooperative replicators. 

2. Research Methods 

First, we studied the replicator equation model for 
the case of prebiotic evolution, which describes the 
time evolution of replicator populations through 
differential equations derived from evolutionary 
game theory [10]. 

Through an analytical study of this model, the 
equilibrium points of the system of differential 
equations studied and the conditions for the local 
stability of these points are found. Based on the 
conditions found, general conclusions are drawn 
about this model. 

Through a computational study of this model, both 
deterministic and stochastic simulations are carried 
out, which were made using authorial programs 
written in the Python language. The deterministic 
simulation, which represents the results obtained for 
large populations, is made using traditional methods 
of numerical solution of differential equations. The 
stochastic simulation, which represents the results 
for small populations, is carried out using the 
Gillespie algorithm [11]. 

The results of the computer simulations are 
presented in graphs, more specifically, in heat maps. 
By analyzing these graphs, the results of these two 
types of simulations are compared, and their 
biological meanings are evaluated. 

Finally, these results are discussed in relation to the 
results obtained by other studies with different 
approaches found in the scientific literature. 

2.1 System modeling 

One way to study how the introduction of 
cooperation occurred in prebiotic evolution is 
through the analysis of competition between two 
types of replicators: one that is selfish and another 
that is cooperative [10]. A replicator is cooperative if 
it catalyzes the replication of another replicator, and 
is selfish if it does not catalyze it. 

We assume that population 1 corresponds to the 
population of selfish replicators and population 2 
corresponds to the population of cooperative 
replicators. The equations that describe the time 
evolution of these populations of replicators are 

𝑋1̇ = 𝑋1(𝑟1 + 𝐵1𝑋2 − 𝜓) ,                                           (1) 

𝑋2̇ = 𝑋2((𝑟2 − 𝐶) + 𝐵2𝑋2 − ψ) ,                                     (2) 

where 𝑋𝑖  is the number of replicators in population 𝑖, 
𝑟𝑖 is the growth rate of population 𝑖, 𝐶 is the cost of 
catalyzing the replication of other replicators, and 𝐵𝑖  
is the rate with which the replication of replicator 𝑖 is 
catalyzed [10]. 

Analyzing (1) and (2), it is observed that the time 
variation rates 𝑋𝑖

̇  of the populations are proportional 
to the sizes of the populations 𝑋𝑖 , which is due to self-
replication. Furthermore, catalysis is modeled by the 
product of population sizes. It can be seen that (1) 
has the term 𝐵1𝑋2 because it is considered that, when 
cooperative replicators emerged, their catalysis 
mechanisms were not yet very precise, in such a way 
that they could catalyze the replication of selfish 
replicators with which they competed. Furthermore, 
as population 2, of cooperative replicators, catalyzes 
the replication of other replicators, this population 
bears the catalysis cost 𝐶. 

The term ψ introduces competition between the two 
populations and represents natural selection in this 
model. It is obtained from the constant population 
condition 𝑋1 + 𝑋2 = 𝑋𝑇 (differentiating this 
expression and using (1) and (2)), where 𝑋𝑇 is the 
total population, which is given by 

ψ =
𝑟1𝑋1+(𝑟2−𝐶)𝑋2+𝐵1𝑋1𝑋2+𝐵2𝑋2

2

𝑋𝑇
 ,                                     (3) 

The assumption of a constant population can be 
justified by the hypothesis that, in the prebiotic 
context, replicators emerged in environments with 
sufficient resources to maintain life, but with limited 
sizes, which were able to support a fixed number of 
replicators [12]. 

2.2 Analytical study 

Replacing the expression of ψ given by (3) in the 
equations (1) and (2), we obtain that 

𝑋1̇ = 𝑟1𝑋1 + 𝐵1𝑋1𝑋2 −
𝑟1𝑋1

2+(𝑟2−𝐶)𝑋1𝑋2+𝐵1𝑋1
2𝑋2+𝐵2𝑋1𝑋2

2

𝑋𝑇
 ,                                           (4) 

𝑋2̇ = (𝑟2 − 𝐶)𝑋2 + 𝐵2𝑋2
2 −

𝑟1𝑋1𝑋2+(𝑟2−𝐶)𝑋2
2+𝐵1𝑋1𝑋2

2+𝐵2𝑋2
3

𝑋𝑇
 ,                                     (5) 



 

 

To analytically study the time evolution of the 
populations of replicators described by the 
differential equations (4) and (5), the local stability 
of the equilibrium points is analyzed (in which the 
populations are constant after elapsed a long time) 
[13], which are found when solving the system of 
equations 𝑋1̇ = 0 and 𝑋2̇ = 0. 

To analyze the local stability of the equilibrium 
points of this system of differential equations, the 
system is linearized around these points, calculating 
the Jacobian matrix [13], which is given by 

𝐽 = (

∂𝑋1̇

∂𝑋1

∂𝑋1̇

∂𝑋2

∂𝑋2̇

∂𝑋1

∂𝑋2̇

∂𝑋2

) ,                                                           (6) 

Subsequently, the eigenvalues λ of the Jacobian 
matrix are determined for each equilibrium point 
(𝑋1

∗, 𝑋2
∗) [13], according to 

𝑑𝑒𝑡(𝐽(𝑋1
∗, 𝑋2

∗) − λ𝐼) = 0 ,                                           (7) 

where 𝐼 is the identity matrix. 

The local stability of the equilibrium points is 
analyzed based on the sign of the eigenvalues [13]. If 
an eigenvalue has a negative real part, then it is 
stable, that is, the population tends to approach this 
point in equilibrium. If an eigenvalue has a positive 
real part, then it is unstable, that is, the population 
tends to move away from this point in equilibrium. If 
the eigenvalues have different signs, then this is a 
saddle point, that is, in certain directions it is an 
attractor and in others it is a repeller. If an eigenvalue 
has an imaginary part, the population exhibits 
oscillatory behavior at equilibrium. 

Using the procedures described above, the 
equilibrium points (𝑋1

∗, 𝑋2
∗) of the system of 

equations 𝑋1̇ = 0 and 𝑋2̇ = 0 are calculated, which 

are (0,  0), (𝑋𝑇,  0), (0,  𝑋𝑇),  (0,
𝐶−𝑟2

𝐵2
) e 

(
𝑟2+𝐵2𝑋𝑇−𝐶−𝑟1−𝐵1𝑋𝑇

𝐵2−𝐵1
,

𝐶+𝑟1−𝑟2

𝐵2−𝐵1
). Analyzing the stability of 

these points, the following results are obtained: 

1. The point (0,0) is not physical due to the 
constant population condition 𝑋1 + 𝑋2 =
𝑋𝑇; 

2. The point (𝑋𝑇, 0) is unstable if 𝑟2 > 𝐶 + 𝑟1, 
which means that a small population of 
cooperative replicators can invade a large 
population of selfish replicators if the 
growth rate of the population of cooperative 
replicators is higher than the growth rate of 
the population of selfish replicators added 
to the cost suffered by the population of 
cooperative replicators for catalyzing the 
replication of other replicators; 

3. The point (0, 𝑋𝑇) is unstable if 𝑟2 + 𝐵2𝑋𝑇 <
𝐶 + 𝑟1 + 𝐵1𝑋𝑇, which means that a small 
population of selfish replicators can invade 
a large population of cooperative 
replicators if the net growth rate 

(population growth rate plus the total 
beneficial effect of catalysis) of the 
population of cooperative replicators is 
lower than the net growth rate of the 
population of selfish replicators plus the 
catalysis cost suffered by the population of 
cooperative replicators; 

4. The point (0,  
𝐶−𝑟2

𝐵2
) is not physical due to the 

constant population condition 𝑋1 + 𝑋2 =
𝑋𝑇; 

5. The point (
𝑟2+𝐵2𝑋𝑇−𝐶−𝑟1−𝐵1𝑋𝑇

𝐵2−𝐵1
,  

𝐶+𝑟1−𝑟2

𝐵2−𝐵1
) is 

physical for 𝐵1 > 𝐵2 and 𝑟2 > 𝐶 + 𝑟1 and 
𝑟2 + 𝐵2𝑋𝑇 < 𝐶 + 𝑟1 + 𝐵1𝑋𝑇  or for 𝐵2 > 𝐵1 
and 𝑟2 < 𝐶 + 𝑟1 and 𝑟2 + 𝐵2𝑋𝑇 > 𝐶 + 𝑟1 +
𝐵1𝑋𝑇 . For the first case, the coexistence 
point is always stable, such that it 
corresponds to conditions 2 and 3 above, 
which means that the populations of selfish 
and cooperative replicators coexist in 
equilibrium. For the second case, the 
coexistence point is always unstable, in such 
a way as to correspond to the opposite of 
conditions 2 and 3 above, which means that 
the populations of selfish and cooperative 
replicators do not coexist in equilibrium, 
that is, one of them goes extinct. 

3. Results and discussions 

In the analytical study, it was observed that, as 
condition 3 indicates, for large total populations, it is 
enough for the catalysis rate of the cooperative 
replicators 𝐵2 to be a little higher than that of the 
selfish replicators 𝐵1 (being the case for the prebiotic 
context) so that the population of cooperative 
replicators is not invaded by selfish replicators. Thus, 
the most interesting question that will be analyzed is 
how cooperative replicators managed to be 
introduced into a population dominated by selfish 
replicators. To achieve this, the initial conditions of 
the computational simulations carried out are 
always the same (except for those simulations that 
vary the initial conditions): the initial population of 
cooperative replicators is small and the initial 
population of selfish replicators is large. 

Therefore, several heat maps were made to analyze 
the relationship between the probability of 
extinction of the population of cooperative 
replicators and the different parameters of the model 
studied, in such a way that all combinations of 
parameters were explored in depth. Furthermore, 
for each combination of parameters, two heat maps 
were created: one through deterministic simulation 
(representing the result for a large total population) 
and another through stochastic simulation 
(representing the result for a small total population), 
which was done with the Gillespie algorithm. 
Furthermore, the validity of applying this algorithm 
was tested by comparing its results for large 
populations with those of the deterministic 
simulation. 



 

 

3.1 Analysis of the influence of growth 
rates, catalysis rates and cost 

According to Figure 1, it is observed that, for most 
parameter combinations, the probability of 
extinction of the population of cooperative 
replicators in the stochastic simulation is greater 
than in the deterministic simulation. This is because 
the total population is small and the initial 
population of cooperative replicators is even smaller, 
which increases the susceptibility to random effects 
[14]. 

Furthermore, in regions of the graphs where total 
extinction should occur according to the 
deterministic simulation, there is a probability, even 
if low, that the population of cooperative replicators 
will not go extinct in the stochastic simulation. Thus, 
the fact that the population is small can mean that the 
population of cooperative replicators does not go 
extinct for parameter values for which it would go 
extinct if the population were large [15]. 

 

Fig. 1 - Heat maps showing the relationship between the 
probability of extinction of the population of 
cooperative replicators and the growth rates 𝑟, the 
catalysis rates 𝐵, and the catalysis cost 𝐶 suffered by 
cooperative replicators. Graphs (a), (c) and (e) were 
made from stochastic simulation, and (b), (d) and (f) 
from deterministic simulation. When not specified in 
the graphs, the values of the other parameters are: 𝑟1 =
𝑟2 = 1, 𝐵1 = 1, 𝐵2 = 2, 𝐶 =  0.5, 𝑋𝑇 = 10, and initial 
populations 𝑋1 = 9 and 𝑋2 = 1. 

3.2 Analysis of the influence of the total 
population 

Based on Figure 2, something new can be observed 
in relation to the case of the previous section: for 

small total populations, the probability of extinction 
of the population of cooperative replicators is lower, 

even for high values of 
𝑟1

𝑟2
, 

𝐵1

𝐵2
 and 

𝐶

𝑟2
, i.e., for 

unfavorable parameter values for cooperative 
replicators in large total populations. 

For Figure 2 (a) and Figure 2 (e), this decrease in 
extinction probability occurs for very low values of 
𝑋𝑇, which is because the initial population of 
cooperative replicators becomes a considerable 
fraction of the total population. However, in the case 
of Figure 2 (c), it is observed that this decrease in 
probability occurs for slightly higher values of 𝑋𝑇. 
This is because the effect of cooperation is highly 
sensitive to the size of the total population [16]. 

 

Fig. 2 - Heat maps showing the relationship between the 
probability of extinction of the population of 
cooperative replicators and the total population 𝑋𝑇 , the 
growth rates 𝑟, and the catalysis cost 𝐶 suffered by 
cooperative replicators. Graphs (a), (c) and (e) were 
made from stochastic simulation, and (b), (d) and (f) 
from deterministic simulation. When not specified in 
the graphs, the values of the other parameters are: 𝑟1 =
𝑟2 = 1, 𝐵1 = 1, 𝐵2 = 2, 𝐶 =  0.5, and initial populations 
𝑋1 = 9 and 𝑋2 = 1. 

3.3 Analysis of the influence of the initial 
population 

When analyzing Figure 3 (c), it can be noted that, for 

values of 
𝐵1

𝐵2
 close to 1, the probability of extinction of 

the population of cooperative replicators decreases 
as the initial population increases, presenting a large 
difference in relation to the deterministic simulation, 
as shown in Figure 3 (d). This means that, for a small 
total population, the initial population of cooperative 
replicators has a large influence on the probability of 



 

 

extinction of that population and the smaller the 
effect of cooperation, the larger the initial population 
will have to be to avoid extinction [17]. 

 

Fig. 3 - Heat maps showing the relationship between the 
probability of extinction of the population of 
cooperative replicators and the initial population of 
cooperative replicators 𝑋2 𝑖𝑛𝑖𝑡𝑖𝑎𝑙, the growth rates 𝑟, 
the catalysis rate 𝐵, and the catalysis cost 𝐶 suffered by 
cooperative replicators. Graphs (a), (c) and (e) were 
made from stochastic simulation, and (b), (d) and (f) 
from deterministic simulation. When not specified in 
the graphs, the values of the other parameters are: 𝑟1 =
𝑟2 = 1, 𝐵1 = 1, 𝐵2 = 2, 𝐶 =  0.5, and 𝑋𝑇 = 20. 

3.4 Analysis of the relationship between 
total population and initial population 

In Figure 4, it is observed that the greater the 
catalysis precision of cooperative replicators in 
relation to the catalysis of selfish replicators (the 
higher 𝐵2 is in relation to 𝐵1), the lower the value of 
the initial population of cooperative replicators for 
which the probability of extinction of this population 
becomes less than 50%, in addition to the faster 
decrease in the probability of extinction as the initial 
population of cooperative replicators 𝑋2 𝑖𝑛𝑖𝑡𝑖𝑎𝑙 
increases [18]. 

Furthermore, it can be noted that the greater the 
catalysis precision of cooperative replicators, the 
smaller the influence of the total population on the 
probability of extinction of the population of 
cooperative replicators for a given initial population. 
Thus, for a given initial population of cooperative 
replicators, the greater the catalysis precision, the 
lower the dependence of the probability of extinction 
of the population of cooperative replicators on the 
total population. This shows that the catalysis 

precision of cooperative replicators is essential for 
small initial populations of these replicators to 
survive in large total populations [19]. 
 

 

Fig. 4 - Heat maps showing the relationship between the 
probability of extinction of the population of 
cooperative replicators and the initial population of 
cooperative replicators 𝑋2 𝑖𝑛𝑖𝑡𝑖𝑎𝑙, and the total 
population 𝑋𝑇 . Graphs (a), (c) and (e) were made from 
stochastic simulation, and (b), (d) and (f) from 
deterministic simulation. When not specified in the 
graphs, the values of the other parameters are: 𝑟1 =
𝑟2 = 1, 𝐵1 = 1, and 𝐶 =  0.5. 

4. Conclusions 

This study, focused on elucidating the introduction of 
cooperation in molecular evolution in a prebiotic 
context, revealed crucial aspects about the 
interaction between finite populations of selfish and 
cooperative replicators. Through a rigorous method 
that combined analytical and computational 
approaches (which involved both deterministic and 
stochastic simulations) to study the replicator 
equation model, significant results were obtained, 
emphasizing the sensitivity of cooperation to 
population size and precision of catalysis. 

It was found that, in small total populations, 
susceptibility to random fluctuations is amplified, 
exerting a considerable influence on the survival of 
cooperative replicators. Notably, for small total 
populations, cooperative replicators may be more 
likely to avoid extinction, even under conditions that 
favor their elimination in larger populations. This 
phenomenon highlights the importance of 
population size in prebiotic evolution, an aspect 
often underestimated. 



 

 

Another important conclusion is the decisive 
influence of the catalysis precision of cooperative 
replicators. The greater this precision, the smaller 
the initial population of cooperative replicators 
needed to reduce the risk of extinction below 50%. 
This result points to precise catalysis as a vital 
mechanism for the survival and prevalence of 
cooperative replicators, which emerged in small 
initial populations. 

The original contribution of this research lies in the 
great diversity of analyzes obtained from the 
application of stochastic simulations, carried out 
using the Gillespie algorithm, in the replicator 
equation model. This approach allowed for a deeper 
understanding of stochastic dynamics in finite 
populations of replicators, complementing 
traditional analytical analyzes and deterministic 
simulations. Furthermore, this study resulted in 
conclusions similar to other studies with different 
approaches. Therefore, this research offers a 
comprehensive analysis of the interactions between 
prebiotic replicators that allowed cooperation to be 
introduced into molecular evolution. 
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