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Abstract. Human senataxin (SETX) is a Helicase DNA-RNA protein located in the cell nucleus, 

which regulates transcription, promotes the solution of R-loops and stress granules, as well as 

acts in the neuroprotection. Missense mutations in the SETX gene can result in both loss and 

gain of function, activating cell death pathways, leading to neurodegeneration associated with 

Ataxia with Oculomotor Apraxia type 2 (AOA2) or Amyotrophic Lateral Sclerosis type 4 (ASL4). 

ASL4 is an autosomal dominant neuropathy characterized by the selective loss of motor 

neurons in the spinal cord, brainstem, and cerebral cortex, leading to hyperreflexia and muscle 

atrophy. AOA2 has a recessive inheritance and is manifested by cerebellar ataxia, cerebellar 

atrophy, axonal sensorimotor neuropathy, and oculomotor apraxia. The pathogeneses of the 

two neuropathies are still not elucidated, but could be associated with an impairment in its R-

loops resolution role caused by mutations. 
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1. Introduction 

Human senataxin (SETX) is a protein with 2677 

amino acids and two domains evolutionarily 

preserved in chordate organisms. One of them is 

described as a DNA-RNA helicase domain (residues 

1,931-2,456) and the other as an N-terminal region 

(residues 1-668), homologous to the Sen1p2 protein 

from Schizosaccharomyces pombe [1, 2]. SETX is 

found mainly in the cell nucleus [3]. 

The role of SETX in cellular functioning is associated 

with the regulation of transcription, the reduction of 

R-loops and neuroprotection [4]. Its importance is 

also described, relating it to the preservation of 

genomic integrity during spermatogenesis [5] and 

to the delay in the aging of female germline cells [6]. 

After extensive SUMOylation by SUMO 2/3 in the N-

terminal region, SETX contributes to curated RNA 

manipulation together with exosome component 9 

(Exos9), promoting transcription quality control. In 

the S-phase of the cell cycle, SETX forms nuclear foci 

at points between the replisome and the RNA 

polymerase II (RNAP II) machinery, reducing 

replication stress. RNA helicases, including SETX, 

promote the dissolution of stress containers, 

composed of proteins and high concentrations of 

untranslated mRNA. Therefore, the adaptive 

response to oxidative stress can be influenced by 

dysfunctions in the performance of SETX [7]. 

Neuropathies can be triggered by missense 

mutations in the SETX gene, specifically 

amyotrophic lateral sclerosis type 4 (ALS4) and 

ataxia with oculomotor apraxia type 2 (AOA2) [2, 8]. 

The loss of function of SETX caused by mutations 

promotes the pathogenesis of AOA2, while the gain 

of function is responsible for ASL4 [2, 9–11]. 

2. Ataxia with Apraxia Oculomotor 

type 2 

AOA2 is characterized by the early onset of 

cerebellar ataxia and axonal sensorimotor 

peripheral neuropathy [12]. Other clinical aspects 

include dysarthria (whose presence can be 

identified in 100% of individuals with AOA2), 

nystagmus (91%) and strabismus (30%) [13], as 

well as tremors (14%), dystonic postures (13.5%) 

and chorea (9.5%) [14]. Serum α-fetoprotein is 

elevated in more than 90% of affected individuals. 

Other possible biochemical changes include high 

levels of serum cholesterol and creatine kinase [15]. 

According to a study carried out by Anheim and 

collaborators [14], AOA2 develops on average at 14 

years of age. Its prevalence in the Alsace region, in 

France, was estimated at 1 case for every 900,000 

inhabitants, making it the second most common 

cerebellar ataxia [16]. 

Oculomotor apraxia is an inconstant symptom, 



 

present in approximately 50% of patients with 

AOA2 [12], with the name suggested by Duquette 

and his collaborators [13]: spinocerebellar ataxia, 

autosomal recessive, with axonal neuropathy type 2 

(SCAN2). 

Despite the continued expansion of the number of 

genes associated with cerebellar ataxias [17–20], 

little is known regarding the molecular basis of its 

pathogenesis, as observed with AOA2. Knowledge of 

pathogenesis could support the development of new 

therapies. Studies at the molecular level provide 

ways to identify the mechanisms affected by 

mutations for further investigation [21]. 

According to Anheim and colleagues [14], in 

patients with AOA2, pyramidal signs and dystonia 

are more frequent and the disease is less severe 

with missense mutations in the helicase domain of 

the senataxin gene than with missense mutations 

outside the helicase domain, deletion or nonsense 

mutations. Thus, they suggested that the lack of 

pyramidal signs in most patients may be the result 

of severe motor neuropathy. 

3. Amyotrophic Lateral Sclerosis 

type 4 

Amyotrophic lateral sclerosis (ALS) is a lethal 

neurodegenerative disease characterized by the 

selective loss of motor neurons in the spinal cord, 

brain stem and cerebral cortex, leading to muscular 

atrophy and death from respiratory failure during 

the degenerative process within 2 to 5 years of 

diagnosis [22]. Familial ALS accounts for 

approximately 5% to 10% of ALS cases [23]. The 

mechanism of toxicity to the motor neuron remains 

unknown [24]. 

However, it is known that ALS4 has dominant 

inheritance [25] and typically develops before the 

age of 25 [8]. It is characterized by the early onset of 

weakness of the distal muscles, difficulty walking, 

hyperreflexia and muscle atrophy [26]. 

4. R-Loops 

During DNA replication or gene transcription, DNA 

undergoes a series of changes that can generate 

structural intermediates that can facilitate 

mutations in DNA. An example of such structural 

intermediates are R-loops, hybrids of RNA and DNA 

generated during transcription when the non-

coding DNA strand is displaced as the transcribed 

DNA strand forms a hybrid with the nascent pre-

mRNA [27, 28]. The formation of R-loops can impact 

several biological processes, such as antibody 

diversification in B cells, DNA damage response, and 

gene expression at multiple levels, including 

regulation of chromatin architecture in the 

promoter region, transcription elongation, and 

termination [29–31]. 

In human cells, genes that contain CpG islands in 

promoters are characterized by having R-loops, 

which form from the transcription start site to the 

first exon-intron junction [32–34]. R-loop formation 

in these gene promoters prevents DNA methylation 

and promotes a permissive status for chromatin 

transcription, which ultimately leads to gene 

expression [35]. An additional site of genomic 

relevance for the formation of R-loops is 

represented by gene transcription terminators. In 

these genomic elements, the formation of R loops 

induces RNA polymerase II to pause, facilitating 

efficient transcription termination [36]. 

Furthermore, the formation of R-loops in 

terminators triggers the recruitment of the enzyme 

responsible for conferring the repressive mark 

H3K9me2, an epigenetic characteristic of the 

terminator elements of certain highly expressed 

genes [37]. 

Although physiologically relevant for many 

biological processes, the persistence of R-loops can 

be detrimental to cell viability [38–40]. Generally, 

exon-intron sequences act as a barrier to R-loop 

propagation in genomes and splicing factors, such as 

SLU7 and SRSF1, which prevent R-loop formation at 

splice sites, allowing proper RNA processing [41–

43]. R-loop processing is catalyzed by two main 

classes of enzymes: RNA-DNA helicase enzymes and 

nucleases. RNA-DNA helicase enzymes (BLOOM, 

DDX5, DDX19, DDX21, SETX, WERNER, among 

others) catalyze the unwinding of the RNA-DNA 

hybrid part of the R-loop, promoting its resolution, 

while some RNA-DNA nucleases, such as RNAseH1 

and RNAseH2 , hydrolyze the RNA portion in RNA-

DNA hybrids, thus dissolving R-loops. Other 

endonucleases involved in R-loop resolution are 

FEN1, which is capable of cutting both the displaced 

ssDNA and the RNA strand of an R-loop, and XRN2, 

which degrade nascent RNA from the 3' terminal 

cleavage site [2, 44]. 

5. Conclusion 

Studies show the importance of R-loops resolution 

to cell viability and the SETX’s role in solving R-

loops, Nevertheless, the comprehension of how 

SETX disfunction could be the cause of neurological 

disorders, such as AOA2 and ALS4 is not well 

understood. Therefore, this theme needs more 

studies to elucidate the pathogeneses of those two 

diseases. 
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