
UNIGOU Remote 2024
Czech-Brazilian Academic Program

Enhancing Data Quality: Customer Data Cleansing and
Unification ETL in a Brazilian Healthcare Company.

Diogenes Vaz de Melo Oliveira a

a Institute of Exact Sciences (ICEx), Federal University of Minas Gerais (UFMG), Belo Horizonte, Minas Gerais, Brazil,
diogenesvazmelo@gmail.com.

Abstract. This paper presents a detailed account of the data cleansing and unification process

implemented in the customer database of a prominent Brazilian healthcare company. Focused on

enhancing data quality, the study begins with an overview of data cleansing principles and the

significance of accurate customer data in the healthcare industry. Leveraging a structured ETL

(Extraction, Transformation, Loading) approach, the methodology involved comprehensive

analysis of the customer dimension table, revealing numerous inconsistencies and errors.

Utilizing tools such as SQL Server Management Studio (SSMS), SQL Server Integration Services

(SSIS), and Apache Spark, cleansing transformations were applied to address issues ranging from

special characters to data validation errors. Additionally, a Python algorithm was developed to

address the unification of customer records, aiming to mitigate duplicate entries. The outcomes

include the creation of a refined customer dimension table and a table containing suggested

unifications, which serve as valuable resources for the company’s data management and decision-

making. Furthermore, the study discusses opportunities for improvement, particularly in the

scalability and performance of the data processing environment, suggesting migration to a cloud

computing service for enhanced efficiency. This study underscores the importance of systematic

data cleansing and unification processes in improving data integrity, ultimately enhancing

customer experiences in the healthcare sector.

Keywords. ETL, Customer Data, Data Cleansing, Data Unification.

1. Introduction

Data cleansing, also called data cleaning or
scrubbing, deals with detecting and removing errors
and inconsistencies from data in order to improve
the quality of data [1]. Through this process,
redundant, inaccurate, or incomplete data can be
identified and corrected, ensuring that the database
contains accurate and reliable information.

Implementing a data cleansing process in a
healthcare company’s customer database can
significantly enhance data quality. In the healthcare
industry, ensuring the integrity of customer data is
crucial for providing high-quality patient care,
streamlining operations, and maintaining regulatory
compliance. By cleansing the data, the company can
minimize errors in patient records, improve
decision-making processes, and enhance overall
efficiency in healthcare personalized customer
experiences.

This paper outlines the cleansing of the customer

dimension table of a large Brazilian healthcare
company through the steps of data Extraction,
Transformation, and Loading (ETL). Lucas, Raja and
Ishfaq [2] define an ETL as a process in which
multiple software tools are utilized for the extraction
of data from several sources, their cleansing,
customization and insertion into a data warehouse.
In this instance, the primary software tools utilized
encompassed the SQL Server Management Studio
(SSMS), the SQL Server Integration Services (SSIS)
and Apache Spark for large-scale data processing.

The present study aimed to achieve two primary
objectives: firstly, to construct a refined customer
dimension table characterized by accurate data
types, validated information, and enhanced derived
columns based on the original dataset. Secondly, the
study sought to identify and address potential
instances of duplicated customer entries within the
database

2. Methodology

2.1 Data source

The initial step involved identifying and
comprehensively analyzing the dimension table
containing the company’s customer data source.
Dimension tables are usually wide, flat denormalized
tables with many low-cardinality text attributes
which are the primary target of constraints and
grouping specifications from queries and BI
applications [3]. The company’s customer dimension
table comprised over 10 million rows and 16
columns. Details regarding these 16 columns are
provided in Table 1.

The examination of the data within the table unveiled
numerous inconsistencies, including the presence of
special characters and numerical values within fields
such as FullName, City, and State. Additionally, non-
numeric characters were found in fields like
CustomerId, CPF (Brazilian individual taxpayer
registry), and CEP (Brazilian ZIP code). Further
irregularities comprised the improper usage of
lowercase or uppercase letters, discrepancies in date
formats, and deviations from standard “M” (for male)
or “F” (for female) values in the Sex field. Invalid
entries were also identified, such as incorrect CPF,
CEP, and phone numbers, as well as invalid email
addresses (e.g., lacking the “@” symbol), among
other discrepancies.

Tab. 1 - Customer table column description.

Column Data
Type

Description

Customer
Id

varchar A sequence consisting of
1 to 18 digits that serves
as an identifier for
customer registration

FullName varchar Customer’s full name

DateOf
Birth

varchar Customer’s date of birth

Sex varchar Customer’s sex, “M” for
male and “F” for female
(F)

Address text Customer’s home
address

CEP varchar Brazilian ZIP code
(customer’s address)

City varchar Brazilian city (customer’s
address)

Health
Insurance
Provider

varchar If the customer has no
health insurance, then
“PART”. Else, insurance
company name

Registra
tionDate

varchar Registration date of the
customer into the
company’s database

Last
Modifica
tionDate

varchar The date of the most
recent modification to
any customer

information

State varchar Brazilian state
(customer’s address)

CPF varchar 11-digit Brazilian
individual taxpayer
number issued by the
government

Email varchar Customer’s e-mail

Phone
Number

varchar Customer’s Brazilian
phone number. It can
store a maximum of two
numbers separated by a
slash

Source int System source indicator
(unchanged during the
cleansing process)

The source table has undergone daily updates,
encompassing the insertion of new data and the
updating of existing records. On a daily basis, all data
from the source table has been extracted and
subjected to the cleansing transformation process.

2.2 Cleansing transformation

To organize the collection of connections, control
flow elements, data flow elements, event handlers,
variables, parameters, and configurations, an SSIS
project and package were created. The SSIS is a tool
that facilitates data extraction, consolidation, and
loading options (ETL), SQL Server coding
enhancements, data warehousing, and
customizations [4]. Within SSIS, the following
transformations have been executed:

 All blank cells have been converted to null;

 All special characters including “\t”, “\n”, “\v”,
“\f”, “\r”, “¬”, backslashes, as well as leading and
trailing spaces, have been eliminated from all
string fields;

 All consecutive sequences of space characters
have been condensed to a single space;

 In order to standardize and facilitate
comparisons, all strings have been converted to
uppercase;

 All values other than “M” and “F” in the Sex field
have been converted to null;

 All non-numeric characters have been removed
from the columns CustomerId, CPF, and CEP;

 All non-alphanumeric characters, excluding
spaces, have been removed from the fields
FullName, City, and State;

 The PhoneNumber field has been split into two
separate columns, PhoneNumber1 and
PhoneNumber2;

 The Address field has been divided into the
columns StreetName, StreetType, and
StreetNumber;

 The FullName column has been split into
FirstName and Surname;

 The CPF number and the e-mail have been
validated;

 All the string columns have been converted to
nvarchar (unicode) data type, to mitigate
encoding erros;

 Boolean (SQL Server bit data type) columns have
been added to indicate whether the values in the
CustomerId, FullName, CPF, and Email fields
were duplicated in the database.

The outcome has been stored in a new customer
dimension table, maintaining an identical row count
to the original.

2.3 Customer unification

After the cleansing process, the database still
contained multiple records seemingly associated
with the same customer. To resolve this issue, a
Python algorithm was developed to compare
similarities between each record in the table.

The algorithm utilized the Python API for Apache
Spark, known as PySpark. PySpark is the Python API
for Apache Spark, an open source, distributed
computing framework and set of libraries for real-
time, large-scale data processing [5]. For the purpose
of reading the data in the algorithm, the entire
content of the new customer dimension table has
been automatically extracted and saved into a
comma-separated values (CSV) file, the simplest and
widest-spread format for the prevailing tabular
datasets [6].

The CSV file has been stored in an on-premises server
folder, and the file location was specified in the
algorithm to enable reading and loading into a
cluster distributed Spark dataframe.

In total, the algorithm comprised 15 categories, each
written as a function with the purpose of comparing
values between column rows. The categories and
their respective criteria are detailed in Table 2.

Some of the categories, such as Categorie2 and
Categorie3, utilize a similarity distance measure
between two words described by Levenshtein [7].
The Levenshtein distance is a string comparison
metric that counts the number of edit operations
(replacements, insertions, and deletions) required to
transform one string into another [8]. The
implementation of the Levenshtein distance
algorithm has been provided as a PySpark SQL built-
in standard function.

Tab. 2 - Unification algorithm categories and criteria.

Category Unification criteria

Category1 CPF, DateOfBirth and FullName
are identical

Category2 CPF and DateOfBirth are
identical, and both FullName
entries have a maximum
Levenshtein distance of 1

Category3 CPF, DateOfBirth and FirstName
are identical, and both Surname
entries have a maximum
Levenshtein distance of 2

Category4 CPF, DateOfBirth and FirstName
are identical

Category5 FullName, DateOfBirth, Email
and PhoneNumber1 are
identical

Category6 FullName, DateOfBirth, Email
and PhoneNumber2 are
identical

Category7 FullName, DateOfBirth, and
Email are identical, and the
PhoneNumber1 of the first
record matches the
PhoneNumber2 of the second

Category8 FullName, DateOfBirth, and
Email are identical, and the
PhoneNumber2 of the first
record matches the
PhoneNumber1 of the second

Category9 FullName, DateOfBirth, Email
and are identical

Category10 FullName, DateOfBirth and
PhoneNumber1 are identical

Category11 FullName, DateOfBirth and
PhoneNumber2 are identical

Category12 FullName and DateOfBirth are
identical, and the
PhoneNumber1 of the first
record matches the
PhoneNumber2 of the second

Category13 FullName and DateOfBirth are
identical, and the
PhoneNumber2 of the first
record matches the
PhoneNumber1 of the second

Category14 FullName, DateOfBirth, Street
Name and StreetNumber are
identical

Category15 FullName, DateOfBirth and
StreetNumber are identical

In addition to the criteria outlined in Table 2, all
records undergoing unification must also meet the
following conditions:

 The evaluated field values must not be null;

 The FirstName must not be equal to “RN”. When
“RN” appears as the first name, it indicates a
newborn. In such cases, the surname was filled
with the full mother’s name, along with other
relevant personal information pertaining to the
mother;

 The CustomerId must be valid.

Each category has been defined to execute and return
the pair original CustomerId and suggested
unification primary CustomerId through a Spark
dataframe as the result of the function.

To ensure each CustomerId appears only once in the
category returned dataframe, if a CustomerId is
duplicated with multiple other CustomerIds within
the same category, priority is given to unifying the
CustomerId with the most recent registration
modification date record. In cases where the
modification dates are identical, the CustomerId with
the higher numerical value takes precedence for
unification. This process ensures the uniqueness of
each CustomerId in the returned dataframe for each
category.

Subsequently, all category results have been
combined into a single Spark dataframe containing
the original CustomerId and the suggested correlated
primary one, along with information about the
unification category used.

In cases where a CustomerId appeared in multiple
unification categories, preference was given to the
lower category over the higher one. For instance, if
CustomerId 1234 was paired with CustomerId 6789
across categories 1, 5, and 10, only the record “1234,
6789, 1” would appear in the final combined Spark
dataframe, indicating that CustomerId 1234 is
suggested to be unified with CustomerId 6789
through category 1.

This decision was informed by the structured nature
of the categories, where a lower category indicates
stronger criteria. For example, category 1
incorporates unchangeable personal information
such as the CPF number and date of birth, as well as
relatively stable details like the customer’s full name.
In contrast, category 5 utilizes information that,
while unique, may change over time, such as the
customer’s e-mail or phone number. The last
categories, like categories 14 and 15, employ criteria
that are neither unique nor static, such as the
customer’s address, and are subject to frequent
change.

To ensure the intended success of the unification
process, an additional verification step was
incorporated into the final Spark dataframe. This
step involved the development of an extra
algorithmic function tasked with evaluating the
presence of circular references. A circular reference
is a chain of references where one object in the chain
refers to the next object, and the last object refers to
the first object again [9], as illustrated in Figure 1.
This verification process, aims to guarantee the

presence of a primary record for each unified
customer. The identification of a circular reference
during this verification step would signify a flaw in
the algorithm's logic.

Fig. 1 - Circular reference in a graph, represented in red.

At the conclusion of the algorithm, the resulting
Spark dataframe was exported to a CSV file, which
was then utilized as a flat file source in SSIS and
loaded into a SQL Server table.

3. Results

The first outcome was the creation of the new
customer dimension table. This new dimension
comprised 33 columns derived from the original
ones after the cleansing process, and the row count
remained unchanged between the old and new
customer tables. Loading was scheduled to occur
daily, ensuring the table remained up-to-date and
synchronized with the source table using a full load
approach. In this method, the table is truncated,
removing all records, and then reloaded with
updated information [10], thus preserving integrity
between the source and destination.

The second outcome was the table containing the
original CustomerId, the suggested correlated
primary one, and the unification category. Loading
was scheduled to occur weekly using an incremental
load approach, wherein only the new or changed
data is loaded. In the most recent execution, the table
contained approximately 600 thousand rows, which
represents 6% of the total customer dimension table
row count. The distribution of unifications per
category is depicted in Figure 2.

Fig. 2 - Bar chart: distribution of records across
unification categories.

4. Discussion

The successful implementation of the ETL process in
this study demonstrates its effectiveness in cleaning
and preparing data for analysis. However, it is
important to acknowledge that the current execution
environment on-premises server presents some
limitations in terms of scalability and performance.
There is a clear opportunity for improvement by
considering migration to a cloud computing service.
Utilizing a cloud platform would offer significant
advantages, especially for complex algorithms, such
as those executed with PySpark, where distributed
computing can accelerate execution time and
improve overall process efficiency. Migration to the
cloud would also provide additional flexibility and
enable dynamic resource adjustments according to
system demands.

Furthermore, the resulting table containing the data
of suggested unifications provides a valuable source
of information for the company's registration team.
These data can be used to generate reports that allow
for careful evaluation and precise validation of the
proposed unifications.

Regarding the presented distribution of records
across unifications categories, it is noteworthy how
Category 14 stands out compared to the rest: almost
60% of the unifications belong to this category. This
significant representation could be attributed to the
lower proportion of null values in the columns used
as merging criteria within this category, as depicted
in Figure 3.

Fig. 3 - Bar chart: proportion of null values in fields
utilized across unification categories.

5. Conclusion

This paper has outlined a comprehensive approach
to enhancing data quality through the cleansing and
unification of customer data in a Brazilian healthcare
company. By employing a structured ETL process,
significant improvements were achieved in the
accuracy and reliability of the company’s customer
dimension table.

The methodology involved meticulous analysis of the
data source, identification of inconsistencies, and the
implementation of cleansing transformations using
tools such as SSIS and Apache Spark. The cleansing
process addressed various issues, including special

characters, formatting discrepancies, and data
validation errors, resulting in a refined customer
dimension table with improved data integrity.

Moreover, the development of a Python algorithm
facilitated the unification of customer records,
proposing to resolve instances of duplicate entries.
The algorithm provided a systematic approach to
identifying and correlating similar customer records,
further enhancing data accuracy.

The outcomes of this study include the creation of a
new customer dimension table and a table containing
suggested unifications, both of which serve as
valuable resources for the company's data
management and decision-making processes. The
distribution of unifications per category offers
insights into the prevalence of data inconsistencies
and informs corrective actions by the user
registration team.

Looking ahead, there are opportunities for further
improvement, particularly in the scalability and
performance of the data processing environment.
Migration to a cloud computing service could unlock
additional benefits, such as enhanced processing
power and flexibility, thereby optimizing the
efficiency of complex data cleansing and unification
algorithms.

6. References

[1] Erhard E., Do H. Data Cleaning: Problems and
Current Approaches. Bulletin of the IEEE
Computer Society Technical Committee on Data
Engineering. 2000; 23(4):3-13.

[2] Lucas J., Raja U., Ishfaq R. How Clean is Clean
Enough? Determining the Most Effective Use of
Resources in the Data Cleansing Process.
International Conference on Information Systems
Proceedings. 2014; 35(1):1-10.

[3] Kimball R., Ross M. The Data Warehouse Toolkit:
The Complete Guide to Dimensional Modeling.
John Wiley & Sons, Indianapolis; 2013; 564 p.

[4] Cote C, Lah M., Sarka D. SQL Server 2017
Integration Services Cookbook. Packt,
Birmingham; 2017; 558 p.

[5] Kudale H., Phadnis M., Chittar P., Zarkar K.,
Bodhke B. A Review Of Data Analysis And
Visualization Of Olympics Using Pyspark And
Dash-Plotly. International Research Journal of
Modernization in Engineering Technology and
Science. 2022; 4(6):2093–2097.

[6] Carvalho P., Hitzelberger P., Otjacques B., Bouali
F., Venturini G. Information Visualization for CSV
Open Data Files Structure Analysis. International
Conference on Information Visualization Theory
and Applications. 2015; 6(1):101–108.

[7] Levenshtein V. Binary codes capable of correcting

deletions, insertions, and reversals. Doklady
Akademii Nauk SSSR. 1965; 163(4), 845–848.

[8] Kruskal B. An overview of sequence comparison:
Time warps, string edits, and macromolecules.
SIAM Review. 1983; 25(2):201–237.

[9] Shukla C., Dreamtech Software India. ASP.NET 2.0
Black Book. Paraglyph Press, Scottsdale; 2006;
1167 p.

[10] Bogza R., Zaharie D., Avasilcai S., Bacali L.
Architecture Models and Data Flows in Local and
Group Datawarehouses. Innovations in
Computing Sciences and Software Engineering.
2010; 1(1):627-362.

